
AD-A173 593 THE IMPLEMENTATION OF A MULTI-LINGUAL DATABASE SYSTEX - 1/2
MULTI-BACKEND DATABASE SYSTEM INTERFACE(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA S T HOLSTE JUN 86

UNCLASSIFIED F/G 9/2 NL

EhmhEEEEohhEEE
EEEEohEEEEmhEE
EEEEIIEIIEIIEE
EEIIIIIIEIIIEE
ElEEllllEllEEE
EIIEEEIIEIIIIE

1111.-=

!CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

(V)
LI

NAVAL POSTGRADUATE SCHOOL
Monterey, California

S ELECTEirI

p D

THESIS
THE IMPLEMENTATION OF A

MULTI-LINGUAL DATABASE SYSTEM--
MULTI-BACKEND DATABASE SYSTEM INTERFACE

by

Steven Todd Holste

o June 1986

* Thesis Advisor: David K. Hsiao

C.*Approved for public release; distribution is unlimited.

_ _ . -- .,

SECURITY CLASSIFICATION OF THIS PAGE I q S
REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

NAVAL POSTGRADUATE SCHOOL (i aabe) NAVAL POSTGRADUATE SCHOOL
1 52 _ _ _ _ _ _ _ _ _ _ _

6C. ADDRESS (Cty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

MONTEREY, CA 93943-5000 MONTEREY, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8C. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11 TITLE (Include Security Classification) UNCLASSIFIED
THE IMPLEMENTATION OF A MULTI-LINGUAL DATABASE SYSTEM--MULTI-BACKEND
DATABASE SYSTEM INTERFACE
12 PERSONAL AUTHOR(S)

STEVEN TODD HOLSTE.
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day). .15 PAGE COUNT

Master's Thesis FROM TO _ _1986 June 20 128
16. SUPPLEMENTARY NOTATION " -

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesry and identify by block number)

FIELD GROUP SUB-GRoUP Database Management System, Multi-Lingual
Database System, Multi-Backend Database System,
Relational Data Model, Hierarchical Data (Cont)

'9 ABSTRACT (Coninue on reverse if ncessary and identify by block number)
The limitations of the traditional Database Management System (DBMS) have
become increasingly clear in recent years. Some of these limitations are
interface inflexibility for user accesses, mono-lingual restriction in
data languages, performance degradations over time, and excessive costs
in upgrading.
Two complementary approaches to the DBMS design and implementation--the
multi-lingual database system (MLDS) and the multi-backend database
system (MBDS)--effectively deal with the limitations of the traditional
DBMS approach. MLDS offers a multi-lingual capability to the DBMS en-
vironment, thus freeing the user from the limitations and inflexibility
of the single-data-model-and-language approach. MBDS, by contast, is
designed to deal with the issues of performance degradation and upgrading
costs by providing a parallel processing capability, and utilizing (Cont)

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

EJUNCLASSIFIEDIUNLIMITEO C3 SAME AS RPT. C30TIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (/nclude Area Code) 22c. OFFICE SYMBOL
Prof.. David K. Hsiao 408-646-2168 52Ho
OD FORM 1473.4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. UNC LASS I F I ED
1

SECUNITY CLASSIPC ATIO OF TwI$ PAGE (lan DOS B

BLOCK 18 (Continued)

Model,- Network Data Model, Template File, Descriptor File.

BLOCK 19 (Continued)

replicated software and identical hardware for expansion.
System upgrades with MBDS have been shown to provide an
essentially proportional performance gain-to-upgrade-cost
ratio.
In this thesis, we present the implementation of an inter-
face between MLDS and MBDS. Specifically, we present the
procedures which create the Template and Descriptor Files
in MLDS that are required by MBDS. Additionally, we describe
the integration process tying these two systems together.

UNCLASSIFIED
2 SECURITY CLAWFICATION OF T"iS PAGE(1ham Data Enteme)

S'll, I , 1 1

Approved for Public Release. Distribution Unlimited.

The Implementation of a
Multi-Lingual Database System - Multi-Backend Database System

Interface

by

Steven T. Hoiste
Captain, United States Marine Corps
B.S., University of Washington. 1976

M. B.A_* University of Washington, 1981

Submitted in partial fulfillment of the
.requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1986

Author:

Approved by: -(. J/,Y'
David K. Hsiao, Thesis Advisor

Steven A e4 jian, Secod e

on~.PeerAccesion For

Vincent Y. IA(m. Chairman, NI R&
Department of Computer Science NTIS TA&I

#0-.' KU.nrou.-ced Eo

Kneale T. Maf~x-.,-X
Dean of Information and Policy Scienf By

Availabiiity Codes

Di1 Avrii ad/or
Di ta

Abstract

The limitations of the traditional Database Management System (DBMS)

have become increasingly clear in recent years. Some of these limitations are

interface inflexibility for user accesses, mono-lingual restriction in data languages.

performance degradations over time, and excessive costs in upgrading.

Two complementary approaches to the DBMS design and implementation--

the multi-lingual database system (MLDS) and the multi-backend database sys-

tem (MBDS)-effectively deal with the limitations of the traditional DBMS

approach. MLDS offers a multi-lingual capability to the DBMS environment.,

thus freeing the user from the limitations and inflexibility of the single-data-

model-and-language approach. MBDS, by contrast, is designed to deal with the

issues of performance degradation and upgrading costs by providing a parallel

processing capability, and utilizing replicated software and identical hardware for

expansion. System upgrades with MBDS have been shown to provide an essen-

tially proportional performance gain-to-upgrade-cost ratio.

- this thesis, r presentithe implementation of an interface between MLDS

and MBDS. Specifically. we present the procedures which create the Template

and Descriptor Files in MLDS that are required by MBDS. Additionally,

descri the integration process tying these two systems together ",, i .

4

TABLE OF CONTENTS

IN T R O D U CT IO N ... 9

A .BA CKGRO UND .. 9

B. ALTERNATIVE APPROACHES ... 11

C. THESIS OVERVIEW .. 13

II. A DESCRIPTION OF MLDS AND MBDS 15

A. THE MULTI-LINGUAL DATABASE SYSTEM (MLDS) 15

1. M otivation and Goals .. 15

2. Some Benefits of M LDS .. 17

3. Enhanced Operational Characteristics 19

4. The MLDS Structure and Functioning: An Overview 20

B. THE MULTI-BACKEND DATABASE SYSTEM (MBDS) 21

1. B ackground ... 21

2. M BDS Configuration .. 23

3. Operation of M BDS .. 25

C. THE ATTRIBUTE-BASED DATA MODEL (ABDM) 27

III. THE DATA MODEL TRANSFORMATIONS 30

A. THE MODEL-SPECIFIC TRANSFORMATIONS 31

1. The Relational-To-Attribute-Based Transformation 31

2. The Hierarchical-To-Attribute-Based Transformation 33

3. The Network-To-Attribute-Based Transformation 35

B. THE DYNAMIC STRUCTURES ... 39

1. The Relational Structure .. 41

2. The Hierarchical Structure ... 42

3. The Network Structure ... 44

5

B'. THE INTERFACE LMPLEMENTATION. 48

A. AN OVERVIEW .. 48

B. CREATING THE TEMPLATE FILES.............................. 49

1. The Relational Algorithm... 49

2. The Hierarchical Algorithm... 53

3. The Network Algorithm .. 53

C. CREATING THE DESCRIPTOR FILES......................... 5

1. The Relational Aklgorithm... 64

2. The Hierarchical Algorithm... 67

3. The Network Algorithm .. 67

V. THE SYSTEM INTEGRATION .. 71

A. SOME GENERAL COMMENTS...................................... 71

B. SPECIFIC INTEGRATION TASKS................................. 72

1. The Intra-MLDS Integration 73

2. The MLDS-MBDS Integration 73

VI. THE CONCLUSION .. 76

VII. APPENDIX A - THE RELATIONAL TEMPLATE FILE 79

VIII. APPENDIX B - THE HIERARCHICAL TEMPLATE FILE 82

IX. APPENDIX C - THE NETWORK TEMPLATE FILE................ 87

X. APPENDIX D - THE RELATIONAL DESCRIPTOR FILE.......... 91

XI. APPENDIX E - THE HIERARCHICAL DESCRIPTOR FILE 100

*XII. APPENDIX F - THE NETWORK DESCRIPTOR FILE 112

XIII. LIST OF REFERENCES .. 125

XIV. INITIAL DISTRIBUTION LIST.. 127

LIST OF FIGURES

Figure 1. The Multi-Lingual Database System .. 20

Figure 2. Multiple Language Interfaces for the
Same Kernel Database System ... 22

Figure 3. The Multi-Backend Database System .. 24

Figure 4. The MBDS Software Structure ... 26

Figure 5. A Relational Version of the Course-Prereq-Offering
D atabase ... 31

Figure 6. An Attribute-Based Mapping of the Relational
Course- Prereq- Offering Database .. 32

Figure 7. An Hierarchical Version of the
Course- Prereq- Offering Database .. 34

Figure 8. An Attribute-Based Mapping of the Hierarchical
Course-Prereq-Offering Database .. 35

Figure 9. A Network Version of the Course-Prereq-Offering
D atabase ... 36

Figure 10. An Attribute-Based Mapping of the Network
Course-Prereq- Offering Database ... 39

Figure 11. Network Database Schema ... 40

Figure 12. Relational Database Schema Data Structures 41

Figure 13. Hierarchical Database Schema Structures 43

Figure 14. Network Database Schema Structures .. 45

Figure 15. The Template File Syntax ... 50

Figure 16. A Relational Database Template .. 51

Figure 17. Relational Template-File-Transformation Algorithm 52

Figure 18. The Hierarchical Template-File-Transformation
A lgorithm 54

Figure 19. The Network Template-File-Transformation Algorithm 55

Figure 20. The Descriptor-File Syntax ... 58

7

Figure 21. A Relational Database Descriptor File .. 61

Figure 22. The Relational-Descriptor- File-Transformation
A lgorithm 66

Figure 23. The Hierarchical-Descriptor-F ile-Transformat ion
A lgorithm 68

Figure 24. The Network-Descriptor-File-Transformation
A lgorithm .. 69

8

IN Jill~ r-

.I. INTRODUCTION

A. BACKGROUND

Database Management Systems (DBMSs)--as traditionally designed.

implemented. and utilized--typically share a number of common features.

Generally. a certain DBMS package (which is written to conform to one of the

popular, prevailing data models) is selected and installed into the organization's

"mainframe" computer. Users' transactions are executed in the mainframe

together with all of an installation's other processes: database files are stored in

the generally-shared secondary-storage devices. As the inevitable database file

growth and database applications increases occur. all users of the system begin to

suffer noticeable performance degradation. This has ordinarily been viewed as the

"price that one must pay," if one is to operate a DBMS.

Among the current DBMS data models are the hierarchical, the network. the

relational. the entity-relationship, and the attribute-based data models. Some of

these DBMSs include the Information Management System (IMS). an IBM

product, supporting the hierarchical data model and its companion data

manipulation language, Data Language/I (DL/I). Similarly, the network model is

supported by Sperry Univac's DMS-1100. together with the network model-based

data manipulation language, CODASYL Data Manipulation Language

(CODASYL-DML). Another commercial product is IBM's SQL/Data System.

supporting both the relational data model and the relational model-based data

definition and manipulation language, Structured English Query Language (SQL).

9
-'.I"

.1' .4W

Each of these models naturally tends to have its own specific strengths and

weaknesses. The comparative ease of configuring a useful and representative

database: the kinds of data--the objects. their properties, and the relationships

between them--that may be conveniently and clearly represented: and the ease

and clarity of performing the desired manipulations upon the database (e.g..

retrievals, insertions, deletions. and updates) are examples of common metrics of

the "fitness- of a DBMS for a specific application. While it is clear that no single

data model-based DBMS will perform optimally in every application, this has

frequently been the price that an organization with limited resources (both

financial and computational) has had to pay in selecting a model. An

organization may choose to satisfice. based on a view of which model best meets

its data management requirements. on familiarity or experience with one or

another of the models, on cost or availability of the competing DBMSs. on

existing or projected computational and/or storage resource limitations, or on any

combination of these--and other--criteria.

Unfortunately, it is rare that an organization can afford to institute two or

more of the available model-based systems. Besides the obvious increases in

direct costs that such a procurement reflects are the computational and storage

costs. The computational costs involved include the competition of two or more

computation-intensive DBMSs which may be concurrently attempting to execute:

storage costs may be envisioned in terms of the explosive, exponential increase in

storage requirements as the same data-- or portions thereof--are repetitively

stored in secondary storage, according to the requirements of the various data

models. The impact on primary storage. with concurrently executing

transactions, is similarly predictable. ,I

102

A final difficulty that we may discuss here involves performance upgrades. I-

may be observed that the standard von Neumann architecture has evolved into a

machine generally capable of handling a wide variety of computational tasks. At

the same time. the typical mainframe thus generalized will rarely be optimally

suited to handle any given, specific task. This is certainly the case in terms of

executing a DBMS. An organization's computer will ordinarily be involved in a

variety of tasks. attempting to meet the needs of a diverse community of users.

Experience has shown that DBMS operations typically load a system

considerably. resulting in increasingly degraded performance (as measured in

terms of the response time, turnaround, and tilroughput) for all users.

Faced with deteriorating performance--and often with simultaneously

increasing computational demands, by both DBMS- and non-DBMS-users--the

need to seek relief through some form of upgrade rapidly emerges as an urgent

requirement. The traditional approach has often been to upgrade or replace the

mainframe--an extremely expensive method, often yielding only incremental

improvement. Presumably, the cost of this expansion (which may be required

solely to offset increasing DBMS use) will be shared throughout the organization

at large. potentially creating an equity issue.

B. ALTERNATIVE APPROACHES

In this thesis. we are concerned with implementation issues pertaining to

alternative approaches to the foregoing difficulties. Specifically. we introduce and

discuss a multi-lingual database system (MLDS) and a multi-backend database

system (MBDS) that. together, represent a significant advance over traditional

and existing DBMS methodologies.

d'11

.2.'V.,

In the MLDS. a single data model (the attribute-based data model, originally

described by Hsiao in [Ref. 1] and extended by Wong [Ref. 2[) is actually

implemented in the computer system. As discussed subsequently. it is in fact the

attribute-based data model that MBDS utilizes in storing a database. and in

performing transactions against that database. In operation, it is possible to

create and store databases, and subsequently to manipulate them, utilizing not

just the attribute-based data model, but the relational. hierarchical. network, and

entity-relationship models as well. The attribute-based model is thus both

conceptually simple and exceedingly powerful. as demonstrated by its capability

of effectively realizing this diverse collection of data models in its software.

As will be discussed in more detail in succeeding sections. MLDS achieves its

goal of supporting the various models and languages not by the proliferation of

DBMSs and multiply-stored databases alluded to previously, but rather by storing

a given database once, and providing an interface that various users may utilize

to access this database. Using this interface (the Language Interface Layer. or

LIL). a database may be initially created, indexed, and stored according to any of

the supported models--and subsequently manipulated by any of these model-

based languages as well. The power and flexibility of MLDS are thus apparent.

MBDS, on the other hand, attacks both the performance problems and the

upgrade difficulties that inhere in the traditional approach to both database and

installation management. As is also described in more detail subsequently. the

MBDS approach is to download the vast majority of DBMS operations from the

mainframe to a series of identical "backend'" computers. These backends may

increase performance at a muich smaller cost than the cost which may be realized

through the traditional mainframe enhancement/replacement approaches.

12

Despite this downloading, the user will continue to interact through the

mainframe (i.e.. the host) as before. using the same terminals and interacting in

essentially the same way. Thus, a high degree of transparency is achieved as users

execute DBMS functionQ utilizing the model(s) of their choice. dealing with the

familiar operating system of the host mainframe; meanwhile, MLDS and MBDS

are operating together to permit this multi-lingual capability, and to dramatically

enhance performance characteristics for DBMS- and non-DBMS-users alike.

C. THESIS OVERVIEW

The purpose of this thesis is to implement an interface between MLDS and

MBDS. in a series of programs written in the C programming language. This

interface consists of a pair of files: the Template File and the Descriptor File,

written for each of the three supported models--the relational, hierarchical. and

network models.

In Chapter II. MLDS and MBDS are discussed in some detail. Here, we learn

about the native, or kernel, model and language of MBDS, i.e. the attribute-based

data model and language. In Chapter III. we introduce and discuss the data-

model transformations that permit a user to select a data model of his choice, via

MLDS.

Next, Chapter IV defines the algorithms, together with the specific

implementation requirements (i.e.. C programs). that form the MLDS-MBDS

interface. Some of the software engineering issues of this integration are then

discussed in Chapter V. while Chapter VI presents conclusions drawn from the

research and implementation of this thesis.

- -

Appendices A through F are th(various programs that implement the

MLDS-MBDS interface through the creation of the Template and the Descriptor

Files.

14

II. A DESCRIPTION OF MLDS AND MBDS

In this chapter, we discuss some of the rationale underlying the multi-lingual

database system (MLDS)--the design goals, the comparative advantages it offers.

and some of the additional operational functionalities that it provides. With this

background, we then briefly review the MLDS structure, and observe the means

by which it carries out its tasks.

Concerning the multi-backend database system (MBDS), the motivation and

background are reviewed. We then discuss its hardware configuration and

operations.

A. THE MULTI-LINGUAL DATABASE SYSTEM (MLDS)

1. Motivation and Goals

Historically, the approach taken in the selection and utilization of a

database management system (DBMS) has followed one of two rather general

paths:

1. Selection of a specific data model, followed by the selection of a
corresponding model-based data manipulation language; or

2. Selection of a preferred data manipulation language system. At this point,
all concerns pertaining to which is an appropriate or desirable data model
become moot-or rather, become non-issues, prescribed by default.

In either case, the selected system (for example, IBM's relational-model based

SQL/DS) is then installed on the computer, corresponding model-based databases

15

are developed and stored, and corresponding model-based transactions and queries

are written and run against the respective databases.

This methodology would be perfectly acceptable (in fact. desirable) to

the extent that:

1. A given (single) DBMS is ideally suited to model all of an organization's
data. the properties of the data, and the interrelationships between them;

2. All users and potential users of the system are qualified, skilled, and
comfortable with the chosen system; and

3. The present, ideal circumstances will never change.

Questions of intra- and inter-organizational compatibility, together with those of

economics, are highly individual in nature, and therefore will not be addressed

here.

In reality, however, it is extremely unlikely that any (let alone all) of

these conditions will ever prevail. The typical organization, for example, will

quite likely have data that reflects an hierarchical structure, together with data

most appropriately modeled by the relational data model. and so forth. In the

case of the second condition, it is reasonable to expect (within any normally

diverse population of users) varying degrees of familiarity and expertise with the

differing DBMSs. Even if the first two conditions can be reasonably met, the

third condition (permanent stability) is unlikely to be met, since databases do

grow, and applications do change over time.

Is this mono-lingual approach, in fact. desirable? An interesting analogy

is offered by Demurjian and Hsiao [Ref. 3: pp. 2-3] with respect to Operating

Systems. As with most current DBMSs. early Operating Systems (such as the

Fortran Monitor System of the 1950's) were essentially mono-lingual, supporting

but a single programming language (such as FORTRAN). As operating systems

16

.1~~ , r

have evolved, this insistence on a single language has given way to operating

systems capable of supporting a large number and variety of programming

languages.

Thus, some of the principal tasks of an operating system might be

characterized as multi-lingual in providing multiple programming languages and

operational modes (such as interactive and batch processing), as well as resource

allocation. Likewise, the modern DBMS should be able to recognize and execute

transactions for different data models in their corresponding data manipulation

languages: offer such modes of database access as ad-hoc queries and transaction

processing; and carefully oversee the access to, and management of, its principal

resource, i.e.. its databases. Logically pursuing this analogy, then, it seems clear

that the provision of a multi-lingual capability within a DBMS is virtually an

evolutionary imperative. From this, the name multi-lingual database system

(MLDS) has been derived.

2. Some Benefits of MLDS

For any organization currently operating one or more of the existing

model-based DBMSs, perhaps the most valuable feature of MLDS is the provision

that permits existing databases to be "migrated" into MLDS. Following this

migration of databases, data manipulations may be commenced in any or all of

the supported languages: users comfortable with the "old" language may

continue to execute familiar transactions, while all may experiment and explore

the various operational features and capabilities offered by the several models and

languages. In this way, a wider variety of both types and modes of transactions

will be available. One need no longer be limited by a single model's structure, nor

by the (perhaps limited) scope of its characteristic transactions.

17

At the same time. previously-written transactions need not be discarded

with the advent of MLDS. Again. the multi-lingual environment ensures that the

"old" language will be supported by MLDS. and an onerous and error-prone

query/transaction conversion process need not be undertaken. Therefore. old

transactions are given a reprieve, while new transactions--written in any of the

supported languages--serve to augment and reinforce. We seemingly have

achieved the best of both worlds, the old and the new.

Contrast the foregoing with an old-fashioned, single-language transfer:

for example, suppose we had wanted to switch from the network to the

hierarchical model. Not only would we be swapping one individual model and

language for another (hoping to realize some net benefit in terms of

representational accuracy and/or functionality), but the conversion process could

become costly indeed. The structure of the database itself would require non-

trivial alteration. together with the- requirement to convert all existing

transactions from the old to the new language.

A final advantage that we may mention that MLDS promises involves

economy in the inevitable hardware upgrades. Eventually the time comes when.

driven either by increasing system use or the irresistible attraction of technological

improvements, it becomes necessary to upgrade the hardware capability. When

separate systems exist (e.g., an hierarchical model-based system is maintained,

together with a separate system supporting the network model). an upgrade will

necessarily involve the hardware of each system. resulting in more effort and

expense. Upgrading an MLDS. by way of contrast. will simultaneously benefit all

users. regardless of their respective models of choice.

18

3. Enhanced Operational Characteristics

There are essentially two new operational characteristics that a user may

exploit with MLDS. The first has already been alluded to: the capability of

exploring and taking advantage of the strengths and the best features that each of

the several supported models offers. A user need no longer be limited by one data

model and language.

The second "enhancement" is the availability of the system's native data

model and data language, known as the kernel data model (KDM) and the kernel

data language (KDL), respectively. As implemented in MLDS, these are the

attribute-based data model and the attribute-based data language. All other

models may have their respective databases transformed into equivalent databases

structured according to the kernel data model; additionally, each of the languages

may have their various, respective transactions and queries translated into the

kernel data language. In both cases, the transformation/translation is executed as

a built-in facility of MLDS. requires no user-involvement, and thus is essentially

transparent to the user.

However, KDM and KDL are more than simply the basic

model/language: they are. in fact, high-level entities in the same sense as the

other (supported) models and languages (e.g.. the relational data model and SQL

data language) are. The immediate result of this recognition is to provide the

user with an additional model and language whose particular strengths and

desirable traits are available for utilization.

19

f m* ,

4. The MLDS Structure and Functioning: An Overview

A high-level overview of the multi-lingual database system is provided in

Figure 1. Utilizing a user-chosen data model (UDM), and writing

transactions/queries in the corresponding user-chosen data language (UDL), the

user interacts directly with the language interface layer (LIL). Transactions are

then passed on to the kernel mapping system (KMS), which must perform two

tasks: first, in the event the user has indicated an intention to create a new

database, KMS transforms the supplied UDM database definition into an

equivalent KDM definition, which is then sent to the kernel controller (KC). KC,

in turn, forwards the KDM database definition to the kernel database system

UDM : User Data Model
UDL : User Data Language
LIL Language Interface Layer
KMS : Kernel Mapping System
KFS : Kernel Formatting System
KC : Kernel Controller
KDS : Kernel Database System
KDM : Kernel Data Model
KDL : Kernel Data Language

Figure 1. The Multi-Lingual Database System.

20

- dAN

(KDS). When this has completed. KDS notifies KC which then notifies the user

(via the LIL) that the database definition has been processed. and that database

loading. may proceed.

The KMS's second task is to deal with UDL transactions. These

transactions are translated by KMS into equivalent KDL transactions, and then

forwarded to KC which, in turn, forwards them to KDS for actual execution.

Following execution, the results are sent by KDS (in KDM-form) back to KC. I
which in turn sends these 'esults to the kernel formatting system (KFS) for

translation from KDM-form to UDM-form. Following this transformation. the

.response set" is returned. again via the LIL. to the user.

It is important to note that the LIL, KMS, KC. and KFS together

comprise the language interface of MLDS, and that a separate interface is

required for each supported data model and language (see Figure 2). However.

each pf these interfaces shares the KDS. This arrangement. of course, reflects the

natural, logical and efficient result of providing a system that affords a multi-

lingual capability from the user's point of view, together with a single, unified

data model and language from the system's point of view.

p'.

B. THE MULTI-BACKEND DATABASE SYSTEM (MBDS)

1. Background

Even as a mono-lingual database system presents severe limitations in

database processing, so too does the traditional database system design which

places the executing database system into main memory (which is shared by all

users), while the databases themselves are placed throughout secondary storage

21

UA

DM, KMS

LILL KC

Figure 2. Multiple Language Interfaces for the Same Kernel Database System.

(which is, likewise, utilized by all users). Even comparatively low-intensity

database system functioning may begin to encounter primary and secondary

storage contention, thus increasing response times while simultaneously decreasing

throtighput. It is clear that database users* and non-database users' pro-essing

requirements may produce mutually unsatisfactory results.

As mentioned previously, this may in part be viewed as one result of

utilizing a general-purpose computer that is. in fact, not even remotely optimized

to perform database operations. As such operations increase, all users suffer more

22

1. ---- 6

or less equally. possibly bringing into play questions of equity: should everyone

suffer for the "'workloads of the few" (database users)?

The multi-backend database system (MIBDS) is designed to solve both

these performance. as well as the costly upgrade. problems (some of which we

have already seen). The basic goal of the MBDS is to establish an extremely

high-performance system for large-capacity databases. Within this primary goal

are two distinct subgoals:

1. To observe a reciprocal reduction in the response times to user transactions
as the number of "backends" in the MBDS is increased (while holding
constant the database size. and the size of responses to transactions). We
say in this case that we are seeking performance gains in terms of response-
time reductions.

2. To observe stable response times to user transactions as the number of
backends is increased proportionally to the increase of transaction responses.
Here, we say that we are seeking capacity growth in terms of response-time
invariance [Ref. 4: p. 9].

An additional goal of MBDS is that the system should be easily extensible.

without any requirement for either new software or the modification of existing

software. (Further information pertaining to the original design and analysis of

MBDS may be found in (Ref. 51 and [Ref. 61.)

2. MBDS Configuration

The configuration of MBDS. as depicted in Figure 3. is actually quite

straightforward. Utilizing essentially off-the-shelf hardware (together with

rigorously specialized software--in fact, the MBDS has been described as a

software database solution [Ref. 4: p. 8]). one microcomputer is designated as the

controller while the remainder are the backends. Each backend has one or more

23" " Eac bakn

Backend I Controller I

Host Transaction OO

Co €ntrollerl

Figure 3. The Multi-Backend Database System.

dedicated disk drives, and the controller is attached to all backends by a

~broadcast bus.

As shown in Figure 3. virtually all database system functions have been

downloaded from the host to the MBDS, leaving the applications programs to

execute in the host. The database has likewise been downloaded, and distributed

across the disk drives of the various backends. This serves greatly to facilitate
parallel request processing.

At the Naval Postgraduate School Laboratory for Database Systems

Research. two separate MBDSs are presently configured. The first consists of

-2.

eight ISI (Integrated Solutions. Inc.) workstations acting as backends. with a

Digital Equipment Corporation VAX-I1/750 acting as the controller.

interconnected via Ethernet. The second. smaller configuration consists of two

MicroVAX-IIs and a VAX-11/780. interconnected via DECNET. The basic ISI

backend is equipped with a \'ME-68020 processor and a 2-MB main memory.

together with 106-MB and 512-MB CDC Winchester disks, a VME-ED Ethernet

board. and a VME-ICPS communication board. The basic MicroVAX-II

backends are configured with a Ka631 VAX-like processor on a Q22 bus and a 2-

MB main memory, as well as a 71-MB RD53 fixed disk, a dual-drive 5-1/4" RX50

floppy disk. and a TK50 cartridge tape drive.

3. Operation of MBDS

'.. The key to the improved performance of the MBDS rests chiefly with the

parallelism achieved by the backends. However, with an arbitrary number of

backends simultaneously performing their appointed tasks, the potential danger

exists for the controller to become a bottleneck. This possibility has been

minimized by giving the controller a minimum of functions to perform, placing

the preponderance of the burden instead upon the backends.

!'' :. Figure 4 gives a pictorial representation of the tasks of the controller.

and of the backends. Beginning with the controller, we may observe that its

responsibilities are described as request preparation. insert information generation,

and post processing. Request preparation are those functions that must be

attended to prior to broadcasting the request to the backends on the bus; these

include parsing, syntax checking, and transforming the (validated) parsed requests

into the forms the backends will require for their subsequent processing. Insert

information generation functions pertain to an insert request. providing the

25

N.51.

Request Insert Information Post

Preparation Generation Processing

Controller

Broadcast Bus

A Backen

Directory Concurrency Record
Management Control Processing

Figure 4. The MBDS Software Structure.

backends with such vital information as which backend is the proper destination

for the record insertion. Finally, the post processing functions are those tasks--

such as the collection of result data prior to forwarding to the host computer--

that are appropriate once the backends have yielded up the request results.

The backends (each of which has identical software) perform the

functions of directory management. record processing, and concurrency control.

The directory management functions involve the determination of the

addresses on secondary storage of identified records. ensuring that the directory

table is maintained properly. Record processing functions are those that

perform the store, select, and retrieve operations to/from secondary storage.

26

L O= 001,11

Concurrency control maintains consistency throughout the database despite

the potentially conflicting demands of concurrently executing processes.

As previously noted, parallelism is the key to the improved performance

that we seek. In addition. each backend maintains a queue of outstanding

requests independently of all other backends. This serves to maximize the time

spent in access operations. while simultaneously minimizing idle time. MBDS

itself will in fact be capable of auto-configuring to any number of backends.

A final MBDS operational note that we should make is that users may

access the system either through the host, or directly through the controller. (A

more detailed description of MBDS may be found in [Ref. 7].)

C. THE ATTRIBUTE-BASED DATA MODEL (ABDM)

As we've seen above, while the user is free to work in the (supported) data

model of choice with the multi-lingual database system, the multi-backend

database system by contrast supports one language: the attribute-based data

language (ABDL). based on the attribute-based data model (ABDM). Inasmuch

as there are literally scores of reference resources pertaining to each of the

supported models (the relational, network, and hierarchical models), we will not

pursue them further here. Due to its lack of commercial realization, ABDM is not

generally as well known; however, a few moments spent investigating it should

prove to be a worthwhile investment.

The relevant constructs in the ABDM are the database, file, record.

attribute-value pair, keyword, attribute-value range, directory keyword, non-

directory keyword, directory, record body. keyword predicate, and query. Each of

these is discussed in turn below.

27

Informally, a database consists of a collection of files. Each file contains a

collection of records which are characterized by a unique set of keywords. A

record. in turn, has two parts. The first of these is a collection of attribute-talue

pairs or keywords. An attribute-value pair is any given member of the Cartesian

product of the attribute name and the value domain of the attribute. For

example, <POPULATION, 25000> is an attribute-value pair in which the

population attribute is paired with a value of 25000. Each record may contain at

most one attribute-value Iair for each attribute defined in the database.

Following all attribute-value pairs is the second part of the record: textual

information, which is referred to as the record body.

Certain attribute-value pairs of a record (or of a file) are defined to be the

directory keywords of the record (file), because either the attribute-value pairs or

their attribute-value ranges are kept in a directory for identifying the records

(files). Conversely, those attribute-value pairs which are not kept in the directory

are called non-directory keywords. An example of a record is shown below:

(<FILE, USCensus>, <CITY, Monterey>, <POPULATION, 25000>.

{Temperate climate})

Note that the angle brackets, <,>, enclose an attribute-value pair (keyword). The

curly brackets, {,}. enclose the record body. The first attribute-value pair of all

records in a given file will, by convention, be the same; specifically, the attribute

will be FILE, and the value will be the file name. The entire record is enclosed in

parentheses. The example record above is from the "USCensus" file.

Records in a database may be identified and/or accessed by means of

keyword predicates. A keyword predicate is a 3-tuple consisting of a directory

attribute, a relational operator (-,.--, <, >, ., >), and an attribute value. For

28

-- LV

example. 'POPULATION 20000"" is a keyword predicate--specifically, a

greater-than-or-equal-to predicate. A database query is formed by combining

keyword predicates into a form known as disjunctive normal form. For example.

the query

(FILE = USCensus and CITY = Monterey) or

(FILE = USCensus and CITY = San Jose)

would be satisfied by all records in the USCensus file with a CITY value of either

Monterey or San Jose. Parentheses bracketing the conjunctions of a query are

used to ensure clarity and avoid any potential ambiguity. For additional

information pertaining to the attribute-based data model, the interested reader is

directed to [Ref. 3: pp. 9-10].

29

NUM 11

III. THE DATA MODEL TRANSFORMATIONS

The purpose of this chapter is to investigate the various techniques used to

translate the database descriptions from the respective (supported) data model

descriptions to a description amenable to the multi-backend database system

(MBDS). Following this. we review some of the actual. dynamic data structures

used in the multi-lingual database system (MLDS) to represent the relational.,

hierarchical, and network models.

As we saw in the previous chapter, MLDS provides the extremely valuable

service of permitting the user to establish databases and perform

queries/transactions in the (supported) data model and language of choice. Since

MBDS is capable only of dealing with databases and queries/transactions

structured according to the KDM (kernel data model) and the KDL (kernel data

language)--i.e., the ABDM (attribute-based data model) and the ABDL

(attribute-based data language) respectively-the multi-lingual capability must

be supported by transforming the user-selected database model into ABDM and

translating the user transactions of a model-based language into ABDL.

This thesis is concerned with the transformation of data models. In the

data-model transformation process, it is essential to preserve the data semantics of

the user data model (UDM), together with ensuring operational equivalence. The

strength and power of the kernel data model and language are such that the

transformation process preserves the semantics of UDM, and that the required

operational equivalence is attained. Thus. for our purposes, the data semantics of

30

the relational model. of the network model. and of the hierarchical model are all

successfully preserved within the attribute-based model.

This thesis is not concerned with the translation of queries and transactions:

interested readers are directed to [Ref. 8] for the implementation of a Network

language interface, to [Ref. 9] for the implementation of a Relational language

interface, and to [Ref. 10] for the implementation of an Hierarchical language

interface.

A. THE MODEL-SPECIFIC TRANSFORMATIONS

1. The Relational-to-Attribute-Based Transformation.

Recall that relational data is organized into tuples of relations. A

database is a collection of relations. The tuples of a relation have the property

that no two tuples may be identical; furthermore, the attributes of a relaition must

all be distinct. In Figure 5. we define the Course-Prereq-Offering database in the

relational format: we will continue to utilize this basic database in subsequent

examples.

Course(Course#, Title, Descrip)

Prereq(Course#, Pcourse)

Offering(Date, Location, Format)

Schedule(Course#. Date)

Figure 5. A Relational Version of the Course-Prereq-Offering Database.

1WW~ffiK MII3'1,1 1111,1'I

Let us briefly describe the relations of this database. In the Course

relation, we note that each course is uniquely defined by a course number. and

that each course additionally has a title and a description. The Prereq relation

indicates that a course may have one or more prerequisites, while the Offering

relation uniquely specifies date, location, and format for courses offered. Finally,

the Schedule relation indicates those courses that are offered on one or more

dates.

The relational-to-atribute-based mapping is the most straightforward

and uncomplicated of those that will be discussed in this thesis. A conceptual

mapping shows that the database, the relation, and the tuple in the relational

model correspond directly to the database, the file, and the record, respectively, in

the attribute-based model. Thus, the relational database depicted in Figure 5 is

mapped to the attribute-based database in Figure 6.

As can readily be seen in Figure 6, each relational attribute has been

mapped into an attribute-based keyword. The place-holder "value" has been

inserted above to represent the value-portion of the attribute-value pair.

(<FILE, Course>, <COURSE#, value>, <TITLE, value>,

<DESCRIP, value>)

(<FILE, Prereq>, <COURSE#, value>, <PCOURSE#, value>)

(<FILE, Offering>. <DATE, value>, <LOCATION, value>,

<FORMAT, value>)
(<FILE, Schedule>. <COURSE#, value>, <DATE, value>)

Figure 6. An Attribute-Based Mapping of the Relational Course-Prereq-Offering Database.

32

.. v.-n' -•

Additionally, a keyword whose attribute is FILE has been included in each record.

and whose place-holder has the relation name.

The specific transformational algorithm for this. and for the other data

models. will be given in Chapter B'.

2. The Hierarchical-to- Attribute- Based Transformation.

Unlike relational data, hierarchical data is organized into occurrences of

segments. A database therefore consists of a collection of segments which are

structured in an hierarchical (tree-like) fashion. As has been characteristic of the

tuples in a relation. no two occurrences of a segment may be identical. Likewise.

the fields of an occurrence are distinct. as have been the attributes of a relation.

& Finally, we may characterize a parent-child relationship between segments in

4 which an occurrence of one segment (the parent) may correspond to one or more

occurrences of another segment (the child). Figure 7 provides a pictorial

representation of the Course-Prereq- Offering hierarchical database that is

equivalent to the relational database of Figure 5.

We may note that an hierarchical database, by definition, has levels,

where the root (uppermost) segment is defined to be at level 0. children of the

root at level 1, grandchildren of the root at level 2, and so forth. In Figure 7. the

Course segment is the root of the hierarchy. and uniquely identifies a course by

Course#: course titles and descriptions are additionally provided. The children of

the Course (root) segment are the Prereq and Offering segments. Thus. each

course may have one or more prerequisites. and may have one or more offerings--

* both of which represent one-to-many relationships.

In the hierarchic al-to- attribute- based mapping, the hierarchical notions

of database. segment. and occurrence are mirrored by the attribute-based

33

Course

Course= * Title Descrip

Prereq Offering

PCourse#* Title Dt* Location Fra

* Denotes the Sequence Field of the Segment

Figure 7. An Hierarchical Version of the Course-Prereq-Offering Database.

concepts of database. file, and record. respectively. An essential aspect of this

mapping, however, is to preserve the semantics of the one-to-many relationships

present in the hierarchy, by including in the attribute-based record the sequence

fields along the hierarchical path from the root segment to the current segment.

and all of the segments between them. Figure 8 is therefore the attribute-based

mapping of our hierarchical database.

As we may quickly discern in Figure 8. each field of a segment

occurrence has been transformed into a keyword of a record. Again, the place-

holder "value" has been employed to represent the value portion of an attribute-

value pair. Reminiscent of the relational-to-attribute-based transformational

technique., the segment name has been included as an attribute value in the FILE

keyword. Finally, we note that the Course sequence field--Course#--has been

cascaded into the attribute-based record types for the children records. Prereq and

Offering. As described above, this action will preserve the one-to-many

34

(<FILE. Course>. <COURSEr-. value>. <TITLE. value>.

<DESCRIP. value>)

(<FILE. Prereq>, <COURSE#. value>. <PCOURSE#. value>.

<TITLE, value>)

(<FILE, Offering>, <COURSE#, value>. <DATE. value>,

<LOCATION, value>. <FORMAT, value>)

Figure 8. An Attribute-Based Mapping of the Hierarchical Course-Prereq-Offering Database.

relationship between the Course segment and the Prereq segment, and between

the Course segment and the Offering segment.

It is interesting to note that if the Offering segment, for example, had

had one or more children, the cascading effect would become even more apparent:

each such child segment- would include (in addition to the FILE keyword defining

the segment name, and the keywords corresponding to each field of the segment)

a keyword for each sequence field in each segment between the current segment

and the root, inclusively. In other words, the child segment would additionally

have a Date keyword, and a Course# keyword. In this way, we may implicitly

observe that the cascading action necessary to preserve the successive one-to-

many relationships throughout the database will result in longer attribute-based

files the lower the original hierarchical segment is in the hierarchy.

3. The Network-to- Attribute- Based Transformation.

The network data model is closely associated with the concept of the

digraph, or directed graph. The nodes of the graph represent the records of the

network, while the arcs represent the relationships between records. The principal

35

distinction between the networK and the hierarchical models lies in the fact hat.

while one-to-many relationships may exist in the hierarchical model. the more

general many-to-many relationships may be found in the network model.

In order to represent the many-to-many relationship, the concept of the

set is introduced. A set is a relationship between record types in which a single

record type is determined to be the set owner, and another record type is denoted

the member record type. Of special note in this regard is the prohibition that an

owner record type may noi be a member of the same set; this CODASYL

requirement eliminates the possibility of recursive definition within a set. By

strategically organizing into two separate one-to-many sets, a many-to-many

structure may be represented hierarchically. Figure 9 is a graphic representation

of the Course-Prereq-Offering network database that is equivalent to the

relational database of Figure 5.

Course

Course# Title Descrip

Requirements DSchedule CSchedule

Prereq

Oqui O ffering

he u

PCourse# Title Date Location Format

Figure 9. A Network Version of the Course-Prereq-Offering Database.

36

-' N 3k,

In Figure 9. the arcs point from the set owner to the set member of a given set

(e.g.. the "'Requirements" set). Thus. we see that we have achieved a many-to-

many relationship between the record types Course and Offering, by establishing

two separate one-to-many relationships (sets) between the respective record types.

Figure 9 therefore informs us that a given Course may have one or more Offerings:

at the same time, a given Offering (i.e., a Date, Location. and Format) may be

associated with one or more Courses.

In establishing a n~twork-to-attribute-based mapping, we observe that

the network concepts of database, record, occurrence, and data item are

represented in the corresponding attribute-based notions of database. file., record.

and attribute, respectively. As in the previous model-specific examples,

attribute-based keywords will be constructed from the elementary data items.

Additionally. each record occurrence of the network database must belong to a

particular type which, again, will be distinguished by the value of the attribute

FILE. Both of these conventions are consistent with the foregoing relational and

hierarchical practices.

Several new concepts must be introduced, however, to fully capture the

distinctive flavor of a iietwork database model. The first of these reflects the

requirement that each record occurrence of a network database have a unique

database key (or address) associated with it. This key (address) is assigned by the

language interface, and is transparent to the user. The key may be represented

by the following attribute-based form, where DBKEY is a literal:

<DBKEY., key-value>

Next. information must be generated that clearly identifies network set

membership, and within a specified set., the set ordering. Inasmuch as occurrences

37

of set types are "pairwise disjoint"--a record occurrence may not be present ill

two different occurrences of the same set type--each member record occurrence

belonging to a set occurrence is thus also uniquely identified by its owner record

occurrence. Set membership can therefore be expressed by inclusion of the

keyword

<MEM.set-name. owner-key-value>

for each set occurrence in which the r~cord is a member.

Finally. it is often useful to know the logical position of a record

occurrence within a specified set occurrence. This may be accomplished by

including the keyword

<POS.set-name. sequence-value>

in the attribute-based record for each set of which the record is a member.

With this information, we are now in a position to express a complete

mapping from the network to the attribute-based model of our Course-Prereq-

Offering database, as shown in Figure 10.

From Figure 10 it may clearly be seen that each network data item has

been mapped to a keyword: the record type has likewise been mapped to a

keyword whose attribute name is the constant "FILE." Once again, the place-

holder "value- is meant to represent the value portion of the attribute-value pair

(keyword). The additional keyword of "DBKEY.' together with its place-holder

"key-value." associates the key (or address) with the record occurrence.

Meanwhile. "MEM' and "POS' convey essential information pertaining to the

set membership of the record instance. The second argument in both of these

keywords identifies the set of which the record is a member. The place-holder

38

(.,-FILE. Course>. _DBKEY. key-value>. <COURSE;. value>.

,-'TITLE. value--.- DESCRIP. value>.

< MEM.DSchedule, owner-key-value >,

<POS.DSchedule. sequence-value>),

(<FILE, Prereq>. <DBKEY. key-value>, <PCOURSE#, value>,

<TITLE, value>.

<MEM.Requirements, owner-key-value>.

,P O S.Requirements. sequence-value>),

(<FILE. Offering>. <DBKEY. key-value>. <DATE. value>,

<LOCATION, value>. -,FORMAT, value>.

<MEM.CSchedule. owner-key-value>,

< POS.CSchedule. sequence-value>)

Figure 10. An Attribute-Based Mapping of the Network'Course-Prereq-Offering Database.

"owner-key-value" uniquely identifies the set owner, while the place-holder

"sequence-value" provides for the ordering of record occurrences within the set

occurrence.

B. THE DYNAMIC STRUCTURES

Recall that the user interacts with the language interface of the multi-lingual

database system (MLDS) in the (supported) model and language of choice. These

are designated as the user data model (UDM) and the user data language (UDL).

respectively (as depicted in Figure 1). During the process of describing and

constructing a database configured according to the chosen model. a database

schema definition is entered in the syntax of that model. An example schema

39

adapted from [Ref. 8: p. 361. utilizing the network model and partially

representing our example database. is shown in Figure 11.

It is important for MLDS to maintain and have available the user's schema.

All user interaction will be based on the specific user's schema. and the language

interface is charged with validating all transactions against the schema prior to

their translation into the kernel language. Furthermore. this schema serves

initially as the basis for the required model transformation to the attribute-based

data model (ABDM).

SCHEMA NAME IS SCHOOL-DAYS.
RECORD NAME IS COURSE:

DUPLICATES ARE NOT ALLOWED FOR COURSE .
p -, COURSE# TYPE IS CHARACTER 6.

TITLE TYPE IS CHARACTER 20.
DESCRIP • TYPE IS CHARACTER 25.

RECORD NAME IS PREREQ;

PCOURSE# ; TYPE IS CHARACTER 6.
TITLE ; TYPE IS CHARACTER 20.

RECORD NAME IS OFFERING:
DATE TYPE IS FIXED 6.
LOCATION : TYPE IS CHARACTER 15.
FORMAT : TYPE IS CHARACTER 5.

SET NAME IS REQUIREMENTS:
OWNER IS COURSE:

ORDER IS SORTED BY DEFINED KEYS
DUPLICATES ARE NOT ALLOWED.

MEMBER IS PREREQ:
INSERTION IS AUTOMATIC
RETENTION IS FIXED:
KEY IS ASCENDING PCOURSE# IN PREREQ:
SET SELECTION IS BY VALUE OF COURSEi IN COURSE.

Figure 11. Network Database Schema.

40

For these reasons. dynamic data structures are generated from the user-

entered database schema. The next several figures will serve to illustrate the

portions of those structures relevant to this thesis.

1. The Relational Structure.

Relevant portions of the relational schema are shown in Figure 12.

Readers interested in further exploring the dynamic structures created by this

schema are directed to [Ref. 9].

For our purposes, there are three principal structures of concern in the

relational schema: the rel-dbid-node. the rel-node, and the rattr-node. Beginning

with the first of these, the rel-dbid-node (for RELational DataBase IDentification

NODE) provides information about the relational database in general: the

rel-dbid-node

rdn-narne

rdn-num-rel rel-node

rdn-first-rel rn-name

rdn-curr-rel rn-num-attr rattr-nole

rdn-next-db rn-first-attr - ran-name

rn-curr-attr ran-type

rn-next-rel ran-length

ran-key-flag

ran-next-attr

Figure 12. Relational Database Schema Data Structures.

41

database name (rdn-name). the number of relations comprising the database

(rdn-num-rel). together with pointers to the first relation in the schema (rdn-

first-rel). the relation currently being accessed (rdn-curr-rel). and the next defined

database (rdn-next-db).

The rel-node (for RELation NODE) provides similar information

pertaining to a relation node: the relation name (rn-name), the number of

attributes in the relation (rn-num-attr), and pointers to the first attribute of the

relation (rn-first-attr). the attribute currently being accessed (rn-curr-attr). and

the next relation in the database (rn-next-rel).

The final node of interest is the rattr-node (for Relational ATTRibute

NODE). which identifies elements pertaining to the attributes of a relation: the

attribute name (ran-name). the attribute type--either f(loat), i(nteger), or

s(tring)--(ran-type). the maximum length of the attribute value (ran-length), a

flag indicating whether the attribute has been designated a key (ran-key-flag). and

finally a pointer to the next attribute in the relation (ran-next-attr).

2. The Hierarchical Structure.

Slightly more complicated, the relevant portions of the hierarchical

schema are shown in Figure 13. Interested readers are directed to [Ref. 10] for a

more complete rendering of these dynamic structures.

Again, there are three principal structures of interest; however, in this

case. three separate instances of the hrec-node have been shown in Figure 13. as

an aid in discerning the hierarchical flavor of the schema.

To summarize the information contained in these nodes. we begin with

the hie-dbid-node (for HIErarchical DataBase IDentification NODE). This

structure contains the database name (hdn-name). the number of segments in the

42

hie-dbid-node
hdn- na
hdn-nu-e
hdn-curr-seg hrec-node
hdn-root-seg -hn-name
-hdn-next-db hn-num-attr

hrec-node lihn-num-cildhecn

hn-nent-sibi-
he-oe hn-num-child rcnd

Figurme 13.Hiearh-isDtabaeShem Structue

hn-nu-attrhn-nu-a43

database (hdn-num-seg). together with pointers to the segment currently being

accessed (hdn-curr-seg). the root segment (hdn-root-seg). and the next defined

database (hdn-next-db).

The hrec-node (for Hierarchical RECord--actually. segment--NODE)

contains a great many parts. These include the segment name (hn-name). the

number of fields in the segment (hn-num-attr), and pointers to the first field (hn-

first-attr). the field currently being accessed (hn-curr-attr). and the parent

segment (hn-parent). Additional elements include the number of sibling segments

(hn-num-sib). a pointer to the next sibling segment (hn-next-sib). the number of

children segments (hn-num-child). and a pointer to the first child segment (hn-

first-child).

Finally. the hattr-node (for Hierarchical ATTRibute--actually. field--

NODE) consists of the field name (han-name), the field type (han-type). the field

length (han-length), together with a flag indicating whether the field is a key field

(han-key-flag), a flag to-indicate whether twin segment occurrences of this type

may contain the same sequence field values (han-multiple), and a pointer to the

next field (han-next-attr).

As may be apparent from the foregoing. the naming conventions utilized

in these data structures may not in every instance result in the ideal identifiers for

model-specific constructs. For example. "han-next-attr" is used. rather than the

more expressive "hfn-next-field." This was done. however, to achieve uniformity

across data models, at the expense of model-specific clarity.

3. The Network Structure.

Finally. we are ready to deal with the relevant parts of the network

schema. shown in Figure 14. There are four structures of interest to us here.

44

nset-node

nsn-name

nsn-owner-name
nsn-member-name

nsn-insert-rnode

nsn-retent-mode

nsn-select-mode

net-dbid-node nsn-owner

ndn-narne nsn-member
ndn-num-set nsn-next-set

ndn-num-rec

ndn-dbkey
RM ~ ndn-first-set

ndn-curr-set

ndn-first-rec nrec-node

ndn-curr-rec nrn-name

ndn-next-db nrn-nurn-attr nattr-node

nm-first-attr -nnnm

nrn-curr-attr nan-level-num

nrn-next-rec nntp

Figur 14. etwor Datbase chemaStrucures

nan-ln45b

P is isis isg

The network structures are the most complicated of those we have dealt

with thus far. The four structures of interest are the net-dbid-node (for NETwork

DataBase IDentification NODE). the nset-node (for Network SET NODE). the

nrec-node (for Network RECord NODE). and the nattr-node (for Network

ATTRibute NODE). Again, a brief description of their respective constituent

parts is in order.

The net-dbid-node consists of the database name (ndn-name). the

number of sets in the database (ndn-num-set). the number of records in the

database (ndn-num-rec). and the next database key value to use when visiting

new records (ndn-dbkey). Additionally, there are pointers to the first set (ndn-

first-set). the set currently accessed (ndn-curr-set), the first record in the database

(ndn-first-rec), the record currently being accessed (ndn-curr-rec), and the next

defined database (ndn-next-db).

The nset-node is concerned with a given network set. It consists of the

set name (nsn-name), the name of the set owner (nsn-owner-name) and of the set

member (nsn-member-name), and the mode of insertion (nsn-insert-mode).

retention (nsn-retent-mode), and selection (nsn-select-mode). Additionally. it

contains pointers to the set owner (nsn-owner) and the set member (nsn-member).

as well as to the next network set (nsn-next-set).

The nrec-node pertains to the individual network records. Information

contained in this node includes the record name (nrn-name), the number of

attributes contained in the record (nrn-num-attr). together with pointers to the

first of these attributes (nrn-first-attr). the attribute currently accessed (nrn-curr-

attr). and the next record in the database (nrn-next-rec).

Finally. the nattr-node is a structure containing information about the

individual attributes that make up a record. The pertinent data contained in the

46

nattr-node includes the attribute name (nan-name). the level number of this

attribute (nan-level-num), the attribute type (nan-type). as well as the maximum

length that a value of this attribute may possibly have (nan-length1). the

maximum length of the decimal portion of this attribute (nan-length2), and a flag

which denotes whether duplicates are allowed (nan-dup-flag). Lastly, pointers to

the next attribute for the current record (nan-next-attr). a "child" attribute

(nan-child), and the "parent" attribute (nan-parent) complete the list.

In the next chapter. we will see how each of these data structures is used

to construct the Template and Descriptor files required by MBDS to implement

the kernel model.

47

IV. THE INTERFACE IMPLEMENTATION

A. AN OVERVIEW

In the preceding chapters, we have discussed many of the interface issues

pertaining to the multi-lingual database system (MLDS) and the multi-backend

database system (MBDS), in the abstract. This has been done to provide an

overview of the interface concepts, without overwhelming the reader with an

abundance of implementation details.

The present chapter is. in a very real sense, the essence of this thesis. The

concepts and structures presented here. together with the respective data

structures presented in the latter part of the preceding chapter, form the essential

interface implementation.

There are two essential and separate portions to this interface. The first

consists of a transformation that defines the user's database to the MBDS. The

appropriate dynamic structures presented in the preceding chapter are utilized to

perform this transformation, and a special file, called the Template File. is

created. It is by means of this file that MBDS will be able to recognize and

manipulate the user's database.

The second phase of the interface involves the creation of the database

indices. This phase differs from the first phase in that, while the creation of the

Template File is accomplished without the user's knowledge or participation, the

creation of indices necessarily involves the user. It is. in fact. the user's detailed

knowledge of the database and intended uses of the database that will permit an

48

.,

effective choice of database indices, which is stored in a Descriptor File. On the

basis of the chosen indices. MBDS then automatically forms the clusters for the

user, although the concept of "clusters" is not necessarily known to the user.

Active user participation is thus required in the creation of the Descriptor File.

which MBDS will subsequently use in the structuring of the database into

clusters.

Each of these phases will thus be taken up in turn. beginning with the

creation of the Template File, and completing with the establishment of the

Descriptor File. There are three procedures that have been written for each of the

two phases of the implementation, effecting the transformations of the relational.

hierarchical, and network models. References are made to the appropriate

Appendices. where the algorithms defined in this chapter are programmed in the

C programming language to create the required files.

B. CREATING THE TEMPLATE FILES

A very specific structure is required of the Template File; Figure 15 indicates

its syntax. The syntax shown is described in attribute-based terms: appropriate

translations should be made, as necessary. for the relational, hierarchical and

network models.

In order to make this abstract structure more understandable, Figure 16 is

the Template File created from the relational database of Figure 5.

1. The Relational Algorithm

Now we are in a position to write the required transformational

$ algorithms. As usual. we begin with the relational model. Figure 17 represents

4 9

a JW - CZ.P , C.4 ,*4 ,

DATABASE-NAME

Number-Of-Files

Number-Of-Attributes

-In-First-File (Add one for the Constant attribute "FILE")

Name-Of-First-File

FILE s (s(tring), i(nteger), or f(loat))

First-Attribute Attribute-Type

Second-Attribute Attribute-Type

< >

i'th-Attribute Attribute-Type

N umber- Of- Attributes

-In-Second-File (Add one for the Constant attribute "FILE")

Name-Of-Second-File

FILE s

First-Attribute Attribute-Type

Second-Attribute Attribute-Type

< >

j'th-Attribute Attribute-Type
< >

< >

Last-Attribute-Of

-Last-File Attribute-Type

Figure 15. The Template-File Syntax.

an algorithm to transform the data structures of Figure 12 into the Template File

9structure of Figure 15. Appendix A is the C-procedure that implements this

algorithm.

Due to the relatively linear structure of the relational database structures

(as seen in Figure 12), the algorithm of Figure 17 is clean and spare. The -_

50

SCHOOL-DAYS (database name)

4 (number of relations)

4 (attributes in 1st relation. including "FILE")

COURSE (name of 1st relation)

FILE s (constant attribute)

COURSE# s

TITLE s

DESCRIP s

3 (attributes in 2nd relation)

PREREQ (name of 2nd relation)

FILE s

COURSE# s

PCOURSE s

4 (attributes in 3rd relation)

OFFERING (name of 3rd relation)

FILE s

DATE i

LOCATION s

FORMAT s

3 (attributes in 4th relation)

SCHEDULE (name of 4th relation)

FILE s

COURSE# s

DATE i

Figure 16. A Relational-Database Template.

procedure of Append:x A has the comparatively simple task of traversing a

sequence of linked lists, withdrawing the required information (e.g., the database

name, number of relations. and so forth), and writing this information to the

51

-*~, 4 -4~ ~ a

Assertions:

1. Relational Database D has relations {R,. R 2 R}.

2. Each relation R,, i = I n. has the r~lation name R,-name.

3. Each relation R,. i = 1,....n. has A. attributes.

4. Each attribute .4 ,, j = 1....AR, has attribute name A ,-name.

5. Each attribute A , j - 1,....Ai, has attribute type A ,i-type.

Algorithmi

write D-Name /* Database Name */

write n / * Number of Relations */

/* Repeat for each relation in database */
for each relation R, in database D do

{

write AR + 1 /* Add I for "FILE" */

write R-name /* Relation Name */

write "FILE s"

/* Repeat for each attribute in relation */

for each attribute A ,, in relation R, do

write A -name A w-type Attribute name. type */

}

Figure 17. Relational Template-File-Transformation Algorithm.

Template File. Succeeding procedures find a somewhat more demanding task,

due in large part to the rather more complicated structures of the hierarchical and

network data structures.

52

*: . . (. . .- , ,.,- ,, ,.-.-'---%,&a.- .'-'-'.,:,. , -, ., . , .. ,- -.-

2. The Hierarchical Algorithm

-Next. we turn our attention to the hierarchical schema. Recall from

Chapter III that. first of all. a change of terminology is in order: -segments"

replace "relations." and "fields" are used instead of "attributes." Additionally.

the straightforward linked-list traversal that we have found so convenient in the

relational schema cannot be used here. Instead. we have a requirement to

"cascade" sequence fields into the child segments of the hierarchy from the parent

segments. Keeping these things in mind, we now turn to the Hierarchical

Transformation Algorithm, given in Figure 18.

Appendix B is a realization of the algorithm of Figure 18, written as a

C-procedure. Again, this algorithm is very high-level, and does not address all of

p. the details that an actual program must deal with. For example. the traversal of

the hierarchy is accomplished by a pre-order recursive traversal technique in

Appendix B. Also, "saving" the cascading sequence fields is done by building a

(temporary) linked list from these fields; we may then simply traverse this list

when it comes time to write these fields to the file for the instant segment.

3. The Network Algorithm

Finally, we are ready to address the Network algorithm, given in Figure

19. Note in Figure 19 that the character " - is used to indicate concatenation.

There. the concatenation of either "MEM" or "POS" to the set name requires no

intervening spaces. For example. if a record happens to be a member of the set

"REQUIREMENTS." then we write the following two lines to the file:

53

Assertions:

1. Hierarchical Database D has segments {S,. S).

2. Each segment S,, i = 1.....n. has segment name S,-name.

3. Each segment S,, i = 1....,n, has Fs fields.

4. Each field F ,,, j 1....F s , has field name F ,.-name.

5. Each field F ,i, J 1....s, has field type F ;,.-type.

Algorithm:

write D-name /* Database Name */

write n /* Number of Segments ./

/* Repeat for each Segment in the Database */

for each segment S, in database D do

{
Trace path back to root segment

/* Repeat for each intermediate Segment */
for each segment on path to root do

count sequence fields, Fx

save sequence fields, Fx

write (F + Fx + 1) /* Add 1 for "FILE" */

write S,-name

write "FILE s"

/* Repeat for each field in segment */
for each field F ,J in segment S, do

{
write F ,j-name F ,-type /* Field name, type */I

/* Repeat for each cascaded field saved above */

for each saved cascaded sequence field Fx do{
write Fx -name Fx -type
}

}

Figure 18. The Hierarchical Template-File-Transformation Algorithm.

54

Assert ions:

1. Network Database D has records {R. R ... R}.

2. Each r"ecord R,. i = I n. has-the record name R,-name.

3. Each record Rt. i 1 n. has AR attributes.

4. Each attribute A i,,, j = 1.....AR, has attribute name A o,-name.

5. Each attribute A , j = 1,...,AR, has attribute type A ,,-type.

6. Each set S, k = 1,...,m has set name 5,-name.

Algorithm:

write D-name /* Database Name */

write n /* Number of Relations */

/* Repeat for each record in database */

for each record R, in database D do

f
determine how many sets record is member of, "x"

write (AR + 2x -i- 2) /* Number of Attributes */

write R,-name

write "FILE s"

write "DBKEY i"

/* Repeat for each attribute in record */
for each attribute A ,, in record R, do

{
write A , -name A ,j-type /* Attribute name. type */

}
/* Repeat for each set record is member of

for each set record is member of do

write MEM^S,-name "i"

write POS 5k-name "i"

}

Figure 19. The Network Template-File-Transformation Algorithm.

55

MEMREQUIREMENTS i

POSREQUIREMENTS i

Appendix C contains the C-procedure written for the algorithm of Figure

19. Because of the layout of the network data structure (see Figure 14), a

recursive routine is required to traverse the attributes of a given record.

As discussed in Chapter III. we have--in addition to the "File"

attribute, written for all sclemas--the attribute "DBKEY." and the attributes

"MEM" 'Sk-name and "POS"^S-name for each set of which a given record is a

member. Of course, the attributes of the record are written out in the usual

manner.

A challenging aspect of the Network Template is the determination of

the number of attributes for a given record. This is shown in the algorithm as

(AR + 2x + 2)

*where x is the number of sets of which the record is a member. This value is

determined by traversing the nset-node structure (see Figure 14). and comparing

the record name R,-name with nsn-member-name. For every set of which the

record is a member, the "MEM" S,-name and "POS" S'i-name attributes will be

added, resulting therefore in 2z attributes. The final figure in the above formula,

"2," refers of course to the attributes "FILE" and "DBKEY."

This concludes our review of the Template Files. We turn next to a

study of the creation of the Descriptor Files.

56

C. CREATING THE DESCRIPTOR FILES

As has been the case with the Template File. the Descriptor File likewise

must adhere to a very rigid syntax. Again. this syntax reflects the requirement of

presenting MBDS with an acceptable data structure. The user participation is

necessary in the creation of a Descriptor File. This stands in a marked contrast

with the Template File, which has been created "automatically," with no user

involvement. The Template .File is used by MBDS as a general description of file

components and structure; the Descriptor File. on the other hand, is used to

reflect the semantic meanings and intended use of the data. In the Descriptor

File, the user specifies the attributes (or fields) to be regarded as "key" or

"sequence" attributes (fields). MBDS utilizes this information to create the index

(cluster) arrangements that permit the most rapid and efficient response to queries

and transactions when they are run against the database.

Thus, there is no single "correct'" choice for a Descriptor File. The user is

free to create the most efficient possible set of file descriptors from a nearly

infinite variety of combinations. Figure 20 describes the basic file format. Again.

the syntax reflects the attribute-based schema: the reader may translate the

syntax into the relational. hierarchical. and/or network schemas as desired.

In Figure 20, DATABASE-NAME of course refers to the name of the instant

database, as it has been in the Template File syntax (Figure 15). "FILE B" is a

constant that will always be present- it precedes the list of file names, described

next. (The meaning of the "B" in "FILE B" will be described subsequently.)

Following "FILE B" is a series of lines, each beginning with an exclamation

mark "!". followed by a space, then a file name. Each file (or relation. segment.

or record type) is automatically included as an EQUALITY descriptor, the

57

DATABASE-NAME

FILE B

Name- Of-First-Record

Name-Of-Second-Record

Name-Of-Last-Record

First-Selecled-Attribute-Name Al B
{
RANGE or EQUALITY statements
}

Second-Selected-Attribute-Name Al B
{
RANGE or EQUALITY statements
}

Last-Selected-Attribute-Name Al B
{
RANGE or EQUALITY statements
}

$

Figure 20. The Descriptor-File Syntax.

exclamation mark identifies the EQUALITY index term. All together then.

"FILE B" followed by all the file-names in the database act to establish the

basic set of descriptors that a given database will always have. Note that this

sequence of descriptors ends with the at-sign, "W". This is necessary because.

58

unlike the Template File. there is no explicit value given to indicate the number

of items to follow.

Following "Name-Of-Last-Record" and -'9 is the " First-Selected-

Attribute-Name AB". What we see taking place here is the result of the

presentation to the user of each attribute of each record, one-by-one. The user

selects the attributes to be used as the database indexing terms. After selecting a

given attribute, the user is asked whether it is to be a RANGE or an EQUALITY

descriptor. The "AB" following the selected-attribute-name reflects the user's

choice of designating the attribute as a RANGE (A) or an EQUALITY (B)

indexing term. (The vertical bar, "I ". is the BNF syntax symbol for "or.")

Either the A or the B will therefore follow the attribute name, and the constant

"FILE B" thus represents a (mandatory) EQUALITY indexing term.

Next in the Figure is the notation

{

RANGE or EQUALITY statements

}

This is purely formalistic: neither the curly brackets nor these words appear as

shown in this position. Instead. a sequence of statements reflecting the selected

RANGE or EQUALITY values appear here, followed by the "(a." As an

example. suppose the current attribute name is CITY. and we wished to establish

EQUALITY index terms for selection to include Monterey. Portland. Houston.

Boston. and Seattle. This may be accomplished by the following sequence:

59

S.'.

CITY B
Monterey
Portland
Houston
Boston
Seattle

Alternatively, suppose we wanted to establish the attribute POPULATION

as an indexing term, utilizing specified RANGE statements. The ranges that we

might establish are 0 to 10000, 10001 to 50000. 50001 to 100000. and 100001 to

1000000000. The following sequence of statements fulfills our purpose:

POPULATION A
0 10000
10001 50000
50001 100000
100001 1000000000

Finally, following the entry of the last selected attribute and its associated

RANGE or EQUALITY statements, we note the dollar sign, "$." This acts as

our file termination symbol. and--as is the case with the at-sign, "@"-is

required because there is no other convenient a priori means to identify the file

extent. The specific choices for indexing terms are ad hoc, based solely on the

user's experience and desires in the establishment of the database.

At this point, it might prove useful to provide a concrete example of a

Descriptor File, as we have done with the Template File. Figure 21 therefore

reflects one possible set of choices in establishing a Descriptor File for the

relational database of Figure 5.

Before proceeding with the algorithms themselves, it may also prove useful to

describe the prompting sequence that is used to designate the desired attributes

(fields), and establish them as RANGE or EQUALITY descriptors, together with

60

SCHOOL-DAYS

FILE B
COURSE

PREREQ

OFFERING
SCHEDULE

COURSE B

Cs4100
Cs4200

Is3100

DATE A

850101 850630

850901 851231

860101 860320

LOCATION B

Monterey
Carmel

Portland

Butte

(a
$

Figure 21. A Relational Database Descriptor File.

their respective values. The first step is to inform the user of the general

procedure. (In this case, since we are reflecting the actions of the language

interface, we use the relational terminology.)

61

The following are the Relations in the <DatabaseName> Database:

RelName 1
RelName (2)
<..... >
ReIName(n)

Beginning with the first Relation, we will present each
Attribute of the relation. You will be prompted as to whether
you wish to include that Attribute as an Indexing Attribute,
and. if so, whether it is to be indexed based on strict
EQUALITY, or based on a RANGE OF VALUES.

Strike RETURN when ready to continue.
Action-- >

When the user has had a chance to read this message and strike the carriage

return. the system begins to cycle through each attribute of each relation. The

user is asked whether the attribute is to be chosen as an indexing term, and if so.

of what kind (RANGE or EQUALITY). For example, imagine that the system is

prompting the user by way of the COURSE# attribute of the COURSE relation:

Relation name: COURSE
Attribute name: COURSE#

Do you wish to install this Attribute as an Indexing Attribute?

{n) - no: continue with next Attribute/Relation
yes: establish this as an EQUALITY Attribute
yes; establish this as a RANGE Attribute

Action --- >

If the user selects the choice "e," the system responds with

Enter EQUALITY match value, or <CR> to exit:

The user may therefore enter an EQUALITY value, or change his mind entirely

62

and exit. If a value is entered. the immediately preceding prompt is repeated

indefinitely, allowing the user to enter as many EQUALITY values for the instant

attribute as desired. A carriage return terminates the sequence: at this point, the

next attribute will be displayed. with the same three action choices.

If the -r" choice is selected, the system responds:

Enter Lower Bound, or <CR> to exit:

Again. the user may exit without prejudice with a carriage return, if he decides it

has been an error to select this attribute. If he does enter a lower bound. the

system responds next with:

Enter U.pper Bound:

After responding, the system returns to the "Lower Bound" prompt, and so the

session continues until the user responds to the "Lower Bound" prompt with a

carriage return. At this point, the system proceeds with the next attribute.

Often an attribute is present in two or more relations. In that case, it may

happen that the attribute has been identified in an earlier relation to act as an

indexing attribute. When this occurs, the system notifies the user that the

present attribute has been previously selected by providing the previously chosen

index value(s), and asking if more are to be added. For example, suppose that we

had entered "Cs2100" as an EQUALITY term for COURSE#. above. Then. in

the PREREQ relation we encounter this attribute again:

63

Relation name: PREREQ

Attribute name: COURSE=

Cs2100

Do you wish to add more EQUALITY values? (y or n)
Action--- >

Logic exists in the system to determine whether the previously-entered descriptor

term is an EQUALITY or RANGE term, and to adjust the prompt accordingly.

If we respond "y," the systen in turn responds with the expected

Enter EQUALITY match value, or <CR> to exit:

Again, we continue to receive this prompt until we respond with a carriage return.

An analogous situation occurs for a previously selected RANGE attribute.

After all attributes of all relations have been considered in turn, the system

returns control to the superordinate routine, and our task is finished.

We now move on, considering the various Descriptor-File-creation algorithms

in turn, beginning with the relational algorithm.

1. The Relational Algorithm

As we note in the following sequence of algorithms, there is a sense of

sameness among them: one is virtually identical to the other. At this high level

of abstraction, this is perhaps not too surprising. In what follows, we endeavor to

identify some of the underlying (implementation) distinctions.

The relational algorithm is shown in Figure 22. Items enclosed in double

quotes, such as "FILE B" and "!" are to be written to the file as literals. i.e.,

precisely as specified in the algorithm. As before, the symbol "K is interpreted to

be the "or" symbol: thus, the line

64

S.

-p~~. -, - A

write AR Al B

means to write a line to the file in which the attribute name is followed by a

space, and then by the character "A" or "B.'" The lines

write additional indexing values

and

write indexing values

are shorthand for the interactive querying process described in the preceding

section, in which the EQUALITY and RANGE indexing values are derived.

Appendix D is the C-procedure that implements the algorithm of Figurc

22. Again, the comparatively simple and straightforward layout of the relational

data structures (Figure 12) contributes greatly to the relative simplicity of the

algorithmic implementation. As shown in our algorithm, two references to the

relational data structures are made: the first writes the respective relations to fhe

file as EQUALITY index terms, while the second is used to interactively present

the attributes to the user for the purpose of creating the remaining index terms.

The algorithm asks the question

if (AR already selected as index term) then...

which we are able to deal with by creating dynamic data structures as we

proceed. Each index term is thus stored in this dynamic data structure as it is

initially designated by the user. Then, at each succeeding attribute, we first

search through this data structure to determine whether or not the instant

attribute has been selected as an index term. If it has. we are able to display the

65

Assertions:

1. Relational Database D has relations {R,. R2

2. Each relation R,, i = 1 n. has the relation name R,-name.

3. Each relation R,, i = 1,...,n. has AR attributes.

4. Each attribute A,, j = 1,....AR, has attribute name A,-name.

-Algorithm:

write D-Name /* Database Name 4/
write "FILE B"
/* Repeat for each relation in database */
for each relation R, in database D do

{
write "!" R,-name
}

write "a"
/* Repeat for each relation in database "7
for each relation R, in database D do

t* Repeat for each attribute in relation 47
for each attribute AR in relation R, do

if (AR already selected as index term) then

V V if (more values to be added) then

write additional indexing values

else

if (AR, is to be index term) then

write AR AIB

write indexing values

write "@5"

write "

Figure 22. The Relational-Descriptor-File-Transformation Algorithm.

66

_indexing values that have been previously entered. and ask the user if he wisies To

enter additional values. If the attribute has not previously been selected. that

option is then offered to the user.

In actuality. then. the various index terms are not written to the file at

precisely the times indicated by the algorithm. Instead. the procedure in

Appendix D performs this task after all attributes have been reviewed and all

index terms have been designated by the user. Then. our dynamic data structure

is traversed, and the index terms and RANGE/EQUALITY values are written to

*he file.

M 2. The Hierarchical Algorithm

As suggested earlier, the hierarchical algorithm--apart from some

model-specific terminology--is essentially the same as that of the relational.

Figure 23 is the algorithm for transforming the hierarchical data structures

(Figure 13) into a Descriptor File.

As in the relational case. two accesses are made to the hierarchical data

structure. The first writes the segment names to the file as EQUALITY indexing

terms: the remainder of the indexing terms are i: reractively designated by the

user on the second pass. As has been the case in emplate File creation. a pre-

order recursive traversal technique is used to work through all segments of the

hierarchy. Appendix E is the C-procedure that implements the algorithm of"-

Figure 23.

3. The Network Algorithm

%., Finally, the network algorithm is presented in Figure 24: by now. this

algorithm should be familiar. Only the specific implementation techniques

67

-" . 1 .o f - r % I 0.

Assertions:
1. Hierarchical Database D has segments {S. S ,S,}.

2. Each segment S,, i = 1,....n, has segment name 5,-name.

3. Each segment 5,, i = 1,...,n, has F, fields.

4. Each field F,, j = 1,...,F s , has field name F,-name.

Algorithm:
write D-name /* Database Name */
write "FILE B"

/ Repeat for each segment in the database */
for each segment S, in database D do

{.
write "!" S,-name}

write "("

/* Repeat for each segment in the database */
for each segment S, in database D do

/* Repeat for each field in the segment */
r each field F. do

if (F. already selected as index term) then

if (more values to be added) then
write additional indexing values

else

if (Fs is to be index term) then

write F. Al B

write indexing values

write "("}
}

write "$"

Figure 23. The Hierarchical-Descriptor- File-Transformation Algorithm.

68

Assertions: 7
1. Network Database D has records {R. R..R,}.

2. Each record R,, i = 1 n. has the record name R,-name.

3. Each record R,, i = 1,....n, has AR attributes.

Algorithm:

write D-name /* Database Name */

write "FILE B"

/* Repeat for each record in the database *1
for each record R, in database D do

{
write "!" R,-name

}
write " "

/* Repeat for each record in the database */

for each record R, in database D do
{
/* Repeat for each attribute in the record */
for each attribute AR do

{
if (AR. already selected as index term) then

if (more values to be added) then
write additional indexing values

else

if (AR is to be index term) then

write AR Al B

write indexing values

write "0"

write "$"

Figure 24. The Network-Descriptor-File-Transformation Algorithm.

6A

U

required to traverse the network data structures (Figure 14) vary from the

relational or the hierarchical cases.

Appendix F is the C-procedure written to implement the algorithm of

Figure 24. It should present no particular surprises by this time to the reader. as

it possesses a streamlining similarity to the other two cases. As has been required

in the network-Template-File creation, a recursive technique is employed to

* traverse the record attributes, which have a kind of hierarchical structure to them.

In the next chapter. we discuss some of the issues and results of

integrating these six procedures into the multi-lingual database system and the

,-. multi-backend database system.

70

V. THE SYSTEM INTEGRATION

A. SOME GENERAL COMMENTS

In referring to the field of Software Engineering, this thesis deals with the

issue of software system integration. Thus, the research and implementation

efforts of the present work have been to effect an integration of two separate

software systems, namely the multi-lingual database system (MLDS) and the

multi-backend database system (MBDS). Each is the result of the hard work of

many generations of graduate students. first at the Ohio SLate University, and

more recently, at the Naval Postgraduate School. Furthermore, this ongoing

developmental effort has been both guided and focused by the two men who, it

can reasonably be stated, have the "broader picture" of the MLDS and MBDS

efforts: Professor David K. Hsiao and Mr. Steven A. Demurjian.

As Frederick Brooks has noted,

Men and months are interchangeable commodities only when a task can be
partitioned among many workers with no communication among them....This is
true of reaping wheat or picking cotton; it is not even approximately true of
systems programming. [Ref. 11: p. 16j

MLDS and MBDS are products of "many workers." and therefore require a great

deal of communications among these workers, together with coordination efforts.

An interesting observation, however, is that the communication has had more

of an inter-generation than an intra-generation flavor. In other words, the

71

research and development efforts of this thesis have been far more affected by the

work of previous thesis students. than by the concurrent work of others.

As a result, "communication" efforts have primarily focused on two

resources:

1. Published theses, and

2. Thesis Advisor and Second Reader.

The work of this thesis has. been largely independent of the ongoing efforts of

others. This does not alter Brooks' observation; it merely reflects a form of

communication that is inherently different in nature, but not in scope or

importance. In projects as large and involved as the MLDS and MBDS

endeavors, we can state with absolute assurance that the time and effort involved

in training and indoctrination have more than substantiated Brooks' arguments

concerning large software developmental undertakings.

A final note is made here concerning the operating system and the

programming medium used in this thesis. It has been necessary to gain a working

knowledge of both the Unix operating system and the C programming language.

in order to competently deal with the implementation requirements of this thesis.

The C programming language is a natural choice for the work performed under

the Unix operating system. We have been fortunate in having a second reader

who is an expert in C, as well as in Unix.

B. SPECIFIC INTEGRATION TASKS

We speak of the integration process of this thesis as two distinct phases. The

first phase involves intra-MLDS integration: the second phase is concerned with

the integration of MLDS and MBDS into a single. coherent entity. It is in the

72

111,111

latter phase that the aims of the present thesis--together with many of the theses

that have preceded it--are achieved.

1. The Intra-MLDS Integration

The intra-MLDS integration effort is briefly described herein. In any

large software project, the whole system consists of a large number of related

program modules. Inevitably, whether by design or otherwise. some modules are

completed before others; at the same time, however, a module may call or depend

on other. possibly unfinished, modules. MLDS. although deemed complete, has

called upon various procedures which do not exist. Thus. the common

programming technique of "stubs" has been used. i.e.. "dummy" call sequences

and procedures have been written in order to permit the compilation and

execution of these earlier procedures and programs.

With the advent of the respective procedures of the present thesis, the

required integration becomes quite clear. It has been necessary to remove the

procedure stubs and to adjust the calling sequences in order to properly reference

the newly-written procedures. As we have noted in the preceding chapters, the

creation of the Template File remains entirely transparent to the user, but the

sequence to create the Descriptor File is now visible.

2. The MLDS--MBDS Integration

As one might expect, to effectively carry out the MLDS--MBDS

integration, a re-working similar to that for the Intra-MLDS integration is

required. MLDS becomes a component of the larger whole--the MLDS--MBDS

system. Therefore. instead of a separate subsystem, certain code modifications are

required to transform MLDS into a C function call. Again. the "stub" technique

has been used. and these stubs must be removed and replaced by the code for

each of the relational. hierarchical. and network elements performing the

corresponding interface tasks.

For example, the main system routine of MLDS--MBDS queries the user

at the top level a. to which function is desired:

What operation would you like to perform?

g) -generate database
1)- load database
e) execute test interface

- execute the SQL interface
d) -execute the DL! I interface
c -execute the CODASYL interface

a execute the DAPLEX interface
- exit to the operating system
z exit and stop MBDS

(Note that SQL refers to the relational model, DL/I to the hierarchical model,

CODASYL to the network model, and DAPLEX to the entity-relationship

model.) The options functionally available to the user prior to the completion of

the present work included (g) - generate database, (1) - load database, (e) -

execute test interface, (x) - exit to the operating system, and (z) - exit and stop

MBDS. In this thesis, the code has been generated (Appendices A - F) to permit

the addition of three interfaces: (s) - execute the SQL interface, (d) - execute the

DL/I interface, and (c) - execute the CODASYL interface. The DAPLEX

interface is not a part of this thesis.

Among other required code modifications, it has been necessary to make

certain global variables accessible to MLDS. Following these changes, the

relevant portions of the system require re-compilation and re-linking; the result of

these actions is an executable main system module with three language interfaces

operational.

74

In Chapter NT. we summarize the results and conclusions of this Multi-

lingual- Dat abase- Syst em--Multi- Bac kend- Dat abase- Syst em Interface.

75

VI. THE CONCLUSION

In this thesis, we have observed many of the difficulties that are associated

with the conventional, single-data-model approach to the database management

system (DBMS). We noted that each of the models (e.g., the relational.

hierarchical. and network models) tends to have its own peculiar strengths and

weaknesses, and that no single model can reasonably be expected to perform

optimally in every application. The costs of installing two or more different and

separate model-based systems are high. Further, performance upgrades of a

conventional DBMS are difficult, and the expenses of upgrading general single-

model-based systems are much higher. These problems have prompted the call

for an alternative means of solving the growing database problems.

The multi-lingual database system (MLDS) and the multi-backend database

system (MBDS) are offered, together, as a very attractive solution to many of the

difficulties associated with the conventional DBMS. As we have seen, MLDS

offers the user a choice of data models and languages. Therefore. any previously-

developed applications from one of the (supported) models need not be

redeveloped when they are moved to the MLDS environment. At the same time,

a variety of different models are available and supported by MLDS. offering the

user the opportunity to exploit their features and advantages.

MBDS. meanwhile, approaches the performance problems of conventional

DBMS packages by offloading the DBMS functions onto a number of identical.

parallel processors and stores. Experiments have validated the promise of this

approach. identifying a reciprocal reduction in response times to user transactions.

76

as the number of backends is increased (while the database size. and therefore tile

size of transaction responses. are being held constant). We likewise observe a

response-time invariance in response times, when the increase in transaction

responses is matched by a proportional increase in the number of backends.

Thus, stable response times are obtained.

A significant appeal of the MLDS/MBDS solution is the fact that it is

software-oriented, using off-the-shelf hardware. In this regard, it differs radically

from hardware approaches such as DBC [Ref. 121, and therefore is potentially

much more attainable in the near term.

As we have seen, the operational methodology being utilized to achieve

multi-lingual and multi-backend capabilities is the transformation. Databases.

queries, and transactions are transformed into a single. coherent model (i.e., the

attribute-based data model) and language (i.e.. the attribute-based language).

Clearly, this transformation, and indeed the MLDS/MBDS solution, is valid only

if the overhead generated by the transformation processes does not become

excessive. Experimental results to date have shown the promise of the solution.

and the validity of the transformation.

In this thesis, we have implemented two facets of the interface of MLDS and

MBDS. These have been on database creation requirements. Template Files

have been developed for each of the relational. hierarchical, and network schemas.

The Template File, produced in the language interface, is employed to describe

the basic structure of a newly-created database to MBDS. This is important

because. as we have seen, MBDS (unlike MLDS) can only "understand" one

model. and can only "speak" one language: the attribute-based data model and

data language, respectively. The creation of this file is automatic, requiring no

user involvement.

77

S ~ ~ ~ 11P P!. -, till~Pu - -

m n n~ n-~ wnn.m. rr l~ rr r r , n, ., ~ , .r.~ P ~P ~r -n,,..,, ra - - .- w .- ig - r -w- - - 27

The generation of the Descriptor Files, on the other hand. is largely

dependent on the interaction of a knowledgeable. informed user. The Descriptor

File is developed to provide an efficient indexing scheme for the storage of--and

subsequent accesses from--the new database. It is therefore essential that the

user, in the interactive process of developing a Descriptor File, has a solid

understanding of the semantic interrelationships of the database, together with a

knowledge of the probable types and patterns of the database usage. The overall

efficiency of the subsequent applications is critically dependent on this phase.

As noted in Chapter V. the success of the MLDS and MBDS efforts is the

result of the work of many minds and many hands. The eventual success of this.

* or any other large software project. is ultimately a function of the success with

which the substantial software engineering challenges are met, and mastered.

78

APPENDIX A - THE RELATIONAL TEMPLATE FILE

This file is: lilcommon.c
LAST DATE MODIFIED: 2/21,86 Created this file

#include <stdio.h>
#include 't licommdata.def"
j*include "fiags.def"'
#include ttsql.ext"t

#iinclude "lil ext"

build-ddl-files()

f
,'* This routine is used to create the MBDS template and descriptor files,
./* calling on a separate routine to create each file: 5

struct dd-nf ddl-info-alloc(;

if (sql-info-ptr -> si-ddl-files == NULL)
sql-info-ptr -> si-ddl-files =ddl-info-alloc();

build-template-fileo;

build-desc-fileo;

}/* End "build-ddl-fileso" routine *

77

build-tem plat e- filet)

This routine builds the MBDS template file for a new Relational
Database that was just created:

struct rel-dbid-node *db-ptr; Database pointer
struct rel-node 5rel-ptr; / * Pointer to a Relational node
struct, rattr-node *at-ptr: ,/* Pointer to a Relational Attribute 5

struct file-info *f-ptr: / File pointer s

char temp-striNUMDIGIT +- 1*1: /* Temporary string ~

*Begin by setting the pointers to the sql-info data structure
*that is maintained for each user of the system:

db-ptr = sql-info-ptr- >si-curr-db.cdi-db.dn-rel:
f-ptr = & (sql-info-ptr- >si-ddl-files- >ddli-temp):

Next. copy the filename where the MBDS template information will ~
b be stored. This filename is constant and was obtained from

licornmdata.def:
strcpy(f-ptr->fi-fname. RTEMPFname):

N*.!xt. open the template File to be created, for Write access:
f- ptr->fi-fid = fopen(f-ptr->fi-fname."'w");

*Next, write out the database name & number of relations:
fprintf(f-ptr- >fi-fid. "%s\n", db-ptr- >rdn-name);
num-to-str(db-ptr- >rdn-num-rel, temp-str);
fprintf(f-ptr- >fi-fid. It%s\nY. temp-str);

*Next, set the pointer to the first relation:
rel-ptr = db-ptr- >rdn-first-rel;

While there are more relations to process. write out the number *

of attributes (-.-I for the attribute "FILE"). and the relation name:
while (rel-ptr '= NULL)

num-to-str((rel-ptr->rn-num-attr 1.temp-str):

fprintf(f- ptr- >fi-fid. tt(s n". rei- ptr- >rn- name).

*Now set the pointer to the first attribute:
at-ptr = rel-ptr- -rn-first-attr:

.Next. print out the constant attribute "FILE s" and wl~e there
. are more attributes to process. print out each attribute name

and type

fprintf(f-ptr. -fi-fid. "FILE s n)
while (m' ptr '= N ULL)

fprintf(C-ptr- ~fi-fid, "cs 'cc n". at- ptr- 'ran- name.

80

XA Oh W

at-ptr- -ran-tpe.f-ptr- 'fi-fid):

Set the pointer to the next attribute:

at-ptr = at-ptr->ran-next-attr:
End "while (at-ptr != NULL)"

set the pointer to the next relation:

rel-ptr = rel-ptr->rn-next-rel;
} '* End "while (rel-ptr != NULL)" *

Finally. close out the file and exit this routine:

fclose(f-ptr->fi-fid);

End "build-template-file()" routine *

,1

APPENDIX B - THE HIERARCHICAL TEMPLATE FILE

*include <stdio.h>
#include "Iicornmdata.def"
*include "flags.def"
#include 'dii-ext"
#include "lil.ext"

build-ddl- files()

This routine is used to create the MBDS template and descriptor files, ~
/* calling a separate routine for the creation of each:

struct ddl-info * ddl info- alloc ()

if (dli-info-ptr ->di-ddl-files == NULL)
dli-info-ptr ->di-ddl-files = ddl-info-alloco;

build-desc-fileo;

} ~End "build-ddI- files{) routine

82

bu ild- hie- temnplate- file()

"This routine builds the MBDS template file for a new hierarchical
"database that was just created.

struct hie-dbid-node *db-ptr; /* ptr to root node in hierarchy
struct hrec-node *hie-ptr; /* ptr to an hierarchical node
char temp-str!NUMDIGIT - 11; /* a "temporary' string"
struct file-info *f-ptr; /* file pointer*I

Begin by setting the pointers to the dli-info data structure that is=
/~maintained for each user of the system:

db.-ptr = dli-info-ptr-z>di-curr-db.cdi-db.dn-hie
f-ptr = & (dli-info-ptr- > di-ddl- files-> ddi- temp);

* N ext. copy the filename where the MBDS template information will ~
/* be stored. This filename is a Constant, and was obtained from
/,5 "licommdata.def":
strcpy (f-ptr- >fi-fname, HTEMPFname);

,~Now, open the template file to be created, for Write access: 5

f-ptr->fi-fid = fopen(f-ptr->fi-fname,"wI");

'~Next, write out the database name and the number of segments:
fprintf(f-ptr->fi-fid. "%s \n" ,db-ptr->hdn-name);
num-to-str(db-ptr->hdn-num-seg, temp-str);
fprintf(f-ptr->fi-fid, "%cs \n" ,temp-str);

/ * Now, set the database painter to the root segment, and call a 5

*routine to traverse the hierarchical structure, writing out the
/*appropriate segment and attribute information:

hie-ptr = db-ptr->hdn-root-seg;
h ie- traverse (hie- ptr);

1'* Finally, close the file and end the program:
fcloseff-ptr);

I /* End 9- aild-hie-template-fileo" routine

83

h ie- traverse) (hie- ptr)

struct hrec-node *hie-ptr: Pointer to an hierarchical node

This routine performs a pre-order recursive traversal of an
hierarchical data structure:

v isit- hie- node (hie- ptr);

if (hie- ptr- >hn-first-child !=NULL)
h ie- traverse (hie- ptr- > h n- frst-c hild);

if (hie-ptr->hn-next-sib NULL)
hie- traverse (hie-ptr- > hn- next-sib);

'~End "hie-traverse(...) routine *

84

visit-hie-node(hie-ptr)

struct hrec-node *hie-ptr: Pointer to an hierarchical node

{
/* This routine performs the required actions on each node in the *

hierarchical structure: this involves tracing a route from the
* "current" node back to the root, and keeping track of all key attri-

/* butes from all nodes along that route. Then, these attributes,
'* together with all attributes from the "current" node, will be written */

/ to the Template File:

struct temp-node *temp-node-alloc(), /* Allocates Temp. Nodes *'
head-ptr, / Pointers to Nodes Used.. *,
* tempnode-ptr; * ... by this Routine */

struct hattr-node *hattr-ptr; Attribute Pointer
struct hrec-node *parent-ptr; Pointer to Node's Parent /
int attr-ctr = 0; /* Attribute Counter
char temp-striNUMDIGIT -,- 1; /* A "Temporary String" *

FILE *file-ptr; /* File Pointer

/* First, we initialize the file pointer:

file-ptr = dli-info-ptr->di-ddl-files->ddli-temp.fi-fid;

/* Second. initialize the "head-ptr" (which will point at the linked list */
/* that we are about to create to hold the key attributes from each node /
/* along the path back to the root). Then, begin to trace the path */

/* back to the root:
head-ptr = NULL;
parent-ptr = hie-ptr->hn-parent;
while (parent-ptr != NULL){

Begin with the first attribute, and then check all attributes in
this node to see if they are "key" attributes, to be saved in the */

* linked list:
hattr-ptr = parent-ptr->hn-first-attr;
while (hattr-ptr ! NULL)

{
if (hattr-ptr->han-key-flag == TRUE){

This IS a "key" attribute, so we want to save the attribute */

name & type in our linked list structure. Also, "bump" the

/* attribute counter to record the effective number of attri- * /
* butes to be recorded for this segment: /

attr-ctr+ -;
tempnode-ptr = temp-node-alloc(;
strcpy(tempnode-ptr-> tn-attr-name. hattr-ptr- >han-name);
tempnode-ptr->tn-type = hattr-ptr->han. type;
tempnode-ptr->tn-next-node = head-ptr:

85

head-ptr = tempnode-ptr:
tempnode-ptr = NULL:

End "if (hattr-ptr->han-key-fiag ==TRUE)"

Continue with the next attribute in this node:
hattr-ptr'= hattr-ptr- >h an- next -attr:.

} *End "while (hattr-ptr != NULL)"

/* Continue with the next node along the path to the root:

parent-ptr = parent-ptr- > hn- parent:
'*~ End "while (parent-ptr != NULL)" *

Having finished constructing our linked list, we may continue to pro- *
*cess the "current" node. First, calculate the effective number of * /

attributes, which is the number recorded in our linked list &long the /

path to the root, plus the number in the "current" node itself, plus
one (for the constant attribute "FILE s"); then, write this value, *

*together with the segment name, to the file:
num-to-str((hie-ptr->hn-num-attr - attr-ctr +t 1), temp-str);
fprintfr file-ptr, "1%s\n"., temp-str);
fprint flfile- ptr, "%s n". hie-ptr- > hn- name);

Now, we can print the constant attribute "FILE s", and then continue ~
by traversing our linked list, printing out the attribute names and
types from the "key" attributes located along the path to the root.

fprintf(file-ptr, "FILE s~n");
tempnode-ptr = head-ptr;
while (tempnode-ptr != NULL)

fprintf(file-ptr. "%s %c xn" .tempnode-ptr- >tn-attr-name.
tempnode-ptr- >tn-type):

tempnode-ptr = tempnode- ptr- > tn- next- node;
' * End "while (tempnode.-ptr '- NULL)" *,

SAt last, we can process the "current" node itself, traversing through*/
Sthe node's attributes, printing their respective names & types:

hattr-ptr = hie- ptr- > hn- first- attr:
while (hattr-ptr ! NULL)

I
fprintf(file-ptr, "%s %c \ n" 1,hattr-ptr- > han- name, hattr-ptr- > han-type);
hattr-ptr = hattr-ptr->han-next-attr;
}'* End "while (hattr-ptr != NULL)" *

*Finally, we want to free the previously allocated linked list memory: *
while (head-ptr ! NULL)

I
tempnode-ptr = head-ptr- >tn-next-n ode;
free(head-ptr);
head-ptr = tempnode-ptr;

'*End "while (head-ptr '- NULL)" *

*End " visit- hie- node (hie-ptr) " routine

88

APPENDIX C - THE NETWORK TEMPLATE FILE

*include <stdio.h>
*include "licommdata.def"
#include "flags.def"
#include 'Idml.exttt
#include I"lilexttI

build-ddl- files()
/* This routine is used to create the MBDS template and descriptor files, ,

/*calling a separate routine to create each file: /

struct ddl-info *ddl-info-alloco;

if (dml-info,-ptr- >dmi-ddl-files == NULL)
dml-info-ptr- > dmi-ddl- files = ddl-info-aloco;

build-net-template-fileo;

build-desc-fileo;.

} * End "build-ddl-filesO)" routine ~

87

build- net-template- file()V

This routine builds the MBDS template file for a new network database
t hat w as j ust created:

struct file-info *f-ptr: jFile Pointer
struct net-dbid-node *db-ptr; /* Database Pointer
struct nrec-node * net-ptr; /* Network Node (record) Pointer *
struct fiset-node *nsec-pcr; /* Network Set Pointer
struct nattr-node *at-ptr: /* Network Attribute Pointer
int member-ctr; /* # of Sets Record is a Mbr of
char temp-striNUMDIGIT - lj; /* A Temporary String

Begin by setting the pointers to the dm1-info data structure
/* that is maintained for each user of the system:
db-ptr = dml-info-ptr- >dmi-curr-db.cdi-db.dn-net;
f-ptr = & (dml-info-ptr- >dmi-ddl-files- >ddli-temp);

" Next, copy the filenamne where the MBDS template information will 5

/* be stored. This filenamne is a Constant, and was obtained from 5

/5 licommdata.def: *

strcpy(f-ptr. >fi-fname. NTEMPFname);

/* Now, open the template file to be created, for Write Access:
f-ptr- >fi-fid = fopen(f-ptr->fi-fname. "w");

/~Next, write out the database name and the number of records: 5

fprintf(f-ptr->fi-fid, "%s\n", db-ptr->ndn-nane);
* ,~ num-to-str(db-ptr->ndn-num-rec, temp-str);

fprintf(f-ptr-> fi-fid. "%s\ n", temp-str);

'~Now. set the database pointer to the first record:*I
net-ptr = db-ptr->ndn-first-rec.

f~While there are more records to process, traverse the Linked List of
'~records, writing out the number of attributes for each record. This*/

number is obtained by summing the nrec-node field "nrn-nurn-attr", 5

/* One for FILE, One for DBKEY. and One for each set membership, MEM. *

/* and one for the relative position within that set, P05:
while (net-ptr I!= NULL)

/5For each record, traverse the ttnset-node" linked list to determine
/*whether the record is a MEMBER of any sets:

member-ctr = 0:
nset-ptr = db-ptr->ndn-first-iet:
while (nset-ptr I!= NULL)

if (strcmp(net-ptr- >nmn-name. nset-ptr-.> nsn-member-name) ==0)

member-ctr- -

88

nset-ptr = nset-ptr- >nsn-next-set:U
End "while (nset-ptr '= NULL)"

Now, calculate the effective number of attributes for this record.
print this value out. together with the record name. and the con-
stant attributes FILE and DBKEY:

num-to-str((net-ptr->nrn-num-attr -- (2 *member-ctr) - 2), Lemp-str),
fprintf(f-ptr- >fi-fid. "1%s \n", temp-str);
fprintf(f-ptr- > f-fid. "'%s \n"., net-ptr- >nrn-name);

fprintf(f-ptr->fl-fid. "FILE s\n");
fprintf(f-ptr- >fi-fid, "DBKEY i\ n");

at-ptr = net-ptr->nrn-first-attr;
n attr- traverse (at- ptr. f-ptr);

SIf the current record IS a Member of any set (determined by check- *

ing the value of "member-ctr", which was incremented once in the *
/*previous traversal of the linked list for every set that the record *I
/is a Member of). we must write the appropriate MEMber and POSition ~
/ information to the file. Therefore, run through the linked list ~

once more, to concatenate the proper names to write to the file: /

if (member-ctr != 0)

nset-ptr = db-ptr->ndn-flrst-set;
while (nset-ptr !=NULL)

if (strcmp(net-ptr- >nmn-name, nset-ptr- >nsn-member-name) = 0)

fprintf(f-ptr- >fi-fid. "MEM");
fprintf(f-ptr- >f-fid. "%s i\n", nset-ptr->nsn-name);
fprintf(f-ptr->fi-fid. "POS"1);
fprintf(f-ptr- >fi-fid. "%s i\n", nset-ptr- > nsn- name);
I '* End "if (strcmp(...) == 0)"

nset-ptr = nset-ptr- >nsn-next-set,
* End "while (nset-ptr != NULL)"

} 'End "if (member-ctr != 0)" /

net-ptr = net- ptr-.-nrn- next-rec;
*~ End "while (net-ptr !=NULL)" ,

SEnd "build-net-template-fileo" routine

nattr-traverse(at-ptr. f-ptr)

struct nattr-node 'at-ptr: Network Attribute Pointer
struct file-info *f-ptr: '~File Pointer

fprintf(f-ptr- >fi-fid. "%s %/c~n". at-ptr-> nan-name. at-ptr--> nan-type):

if (at-ptr->nan-child !=NULL)
nattr-traverse(at-ptr- >nan-child, f-ptr);

if (at-ptr- >nan-next-attr !=NULL)
nattr-traverse (at-ptr- > nan- next- attr. f-ptr);
I End "nattr-traverse(...) routine

.5go

II1 i l 11 1 1

APPENDIX D - THE RELATIONAL DESCRIPTOR FILE

*include "licommdata.def t
#include "lil.ext"
#include "sql.ext"
#include <strings.h>
#include <ctype.h>

build-desc-fileO

{
/* This routine builds the Descriptor File to be used by the MBDS in the ',

/* creation of indexing clusters: * I

struct rel-dbid-node *db-ptr; /* Database Pointer */
struct rel-node *rel-ptr; /* Relation Node Ptr /
struct rattr-node *at-ptr; /* Attribute Node Ptr */
struct descriptor-node *desc-head-ptr, /* Pointers to Desc-node..*

descriptornode-ptr, / ...Linked List */
descriptor-node-alloco; / Allocates Nodes */

struct value-node *valuenode-ptr; /* points to Value Node */
struct file-info *f-ptr; !* File pointer
int num, /* holds User Response *7

found, 7* Boolean flag
goodanswer; /* Boolean flag *7

int index, /* Loop Index */

str-len; /* Length of Relation Name*/

/* Begin by setting the pointers to the sql-info data structure that is */
/" maintained for each user of the system: '/
db-ptr = sql-info-ptr->si-curr-db.cdi-db.dn-rel;
f-ptr = &(sql-info-ptr->si-ddl-files->ddli-desc);

7' Next, copy the filename where the MBDS Descriptor File information
/* will be stored. This filename is Constant, and was obtained from *7
/* licommdata.def:*
strcpy(f-ptr- > fi-fname, RDESCFname);

/* Now. open the Descriptor File to be created, for Write access: */
f-ptr->fi-fid = fopen(f-ptr->fi-fname, "w");

/* The next step is to traverse the Linked List of relations in the data- *7

/* base. There are two reasons for doing so: First, to write the Re- */

, lation Names to the Descriptor File as EQUALITY Descriptors; this is */

/* done automatically with any Relational Database, is a necessary ele- /
/s ment of any Descriptor File created from such a Database, and requires
7' no user involvement. Second, it allows us to present the Relation */
/* Names (without their respective Attributes) to the User, as a memory *7

91

jog:
system("clear"):
fprintf(f-ptr- >fi-fid, "%s, n", db-ptr->rdn-name):
fprintf(f-ptr->fi-fid, "FILE B\n");
printf("\nThe following are the Relations in the ");

printf("%s". db-ptr->rdn-name);
printf(" Database:\ n \ n");
rel-ptr = db-ptr->rdn-first-rel;

/* Traverse the Relational structure: */

while (rel-ptr != NULL)
{
fprintf(f-ptr->fi-fid, "! ");

fprintf(f-ptr- > fi-fid, "%c", rel-ptr- >rn-nameVOI);
str-len = strlen(rel-ptr->rn-name);
for(index = 1; index < str-len; index+-)

if (isupper(rel-ptr- >rn-namelindexi))
fprintf(f-ptr->fi-fid, "%c", tolower(rel-ptr->rn-name[index]));

else
fprintf(f-ptr->fi-fid, "%c", rel-ptr->rn-namelindex]);

fprintf(f-ptr->fi-fid, "\n");
printf("\n\t%s", rel-ptr->rn-name);
rel-ptr = rel-ptr->rn-next-rel;
} * End "while (rel-ptr != NULL)" */

/* Each Descriptor Block must be followed by the "0" sign:
fprintf(f-ptr->fi-fid, "(0\ n");

Now, inform the user of the procedure that must be followed to create */

/* the Descriptor File: */

printf("\n\nBeginning with the first Relation, we will present each");

printf("\nAttribute of the relation. You will be prompted as to whether");

printf("\nyou wish to include that Attribute as an Indexing Attribute,");

printf("\nand. if so, whether it is to be indexed based on strict");
printf("\nEQUALITY, or based on a RANGE OF VALUES.");
printf("\n\nStrike RETURN when ready to continue.");
sql-info-ptr- > si-answer = get-ans(&num);

/* Initialize the pointer to a Linked List that will hold the results */

,'* of the Descriptor Values, then return to the first Relation of the * /
/* database and begin cycling through the individual attributes:

desc-head-ptr = NULL;
rel-ptr = db-ptr->rdn-first-rel;
while (rel-ptr '= NULL)

{
at-ptr = rel-ptr->rn-first-attr;
while (at-ptr != NULL)

{
system("clear");
printf("Relation name: %s\n".rel-ptr->rn-name):
printf("Attribute Name: %s\n\n",at-ptr->ran-name):

92

I- - '

Now. traverse the Attribute linked list that is being created.-
.to see if the current Attribute has already been established as
.a Descriptor Attribute. If so. offer the user the opportunity
.to add additional EQUALITY or RANGE OF VALUE values: otherwise.

offer the user the opportunity to establish this as a, Descriptor
Attribute:

descriptornode-ptr = desc-head-ptr;

fon =srcp FASE;>a-nm.dsritroept>at-nm =0

while ((descriptornode-ptr != NULL) && (found == FALSE))

r'. The Attribute HAS 41ready been chosen as a Descriptor.
S* Allow the user the option of adding additional Descriptor

Svalues. after listing those already entered:

printf("\nThis Attribute has been chosen as
printf("an Indexing Attribute. \n)
printf("The following are the values that")
printf("have been specified:\n \n"):
found = TRUE;
v aluenode-ptr = descriptornode-ptr- > first-v alue- node;
while (valuenode-ptr '= NULL)

if (descriptornode- ptr- >descriptor- type == 'A)
printf(" \t%s %s\ n", valuenode-ptr- >value 1,

vaiuenode-ptr- >valae2);
else

printf("1\t*/s\n"', valuenode-ptr->value2);
valuenode-ptr = valuenode-ptr- >next-value-node;
) ~ End "while (valuenode-ptr !:= NULL)"*/

printf("'\.nDo you wish to add more")
if (descriptornode- ptr- > descriptor- t ype W A)

printf(" RANGE");
else

printf("EQUALITY");
printf("l values' (y or n
sql-info-ptr- >si-answer = get-ans(&num);
if ((sqI- info- ptr- >si- answer =='y') 1;

(sql-info-ptr- > si- answer = Y)

The user DOES wish to add more descriptors to the

currently existing list:

if (descriptornode- ptr- >descriptor-type = = 'A)

else

build- EQ-descrip(descriptornode-ptr. at-ptr- >ran-length);I
End "if ((sqI- info-ptr- >si- answer == 'y')

(sql1-info- ptr- >si- answer == 'V'))

End "if (strcmp(...) == 0)"
descriptornode-ptr = descriptornode-ptr- -next-desc-node:

End "while ((descriptornode-pr NULL) && (found..))"

if (found == FALSE)

" The Attribute has NOT previously been chosen as a Descriptor.
Allow the user the option of making this a Descriptor Attri-
bute. with appropriate Descriptor Values: 5

{
printf(", nDo you wish to install this Attribute as an
printf("Indexing Attribute?'\ n \n
printf("',t(n) - no: continue with next Attribute Relation n"):
printf("\t(e) - yes: establish this as an EQUALITY Attribute',n"):
printf("\,t(r) - yes: establish this as a RANGE Attribute n"):
goodanswer = FALSE:
while (goodanswer == FALSE)

f
sql-info-ptr- >si-answer = get-ans(&num):

switch (sql-info-ptr- >si-answer)
I
case n: User does NOT want to use this as an I

Indexing (Descriptor) Attribute: *
goodanswer = TRUE;
break:

case 'e': U User wants to use this as an EQUALITY ,
Attribute: -'

goodanswer = TRUE:

descriptornode-ptr = descriptor-node- allo
descriptornode-ptr- > next-desc-nodeao

desc-head-ptr:
desc-head-ptr = descriptornode-ptr:
strcpy (descriptornode-ptr- >attr-name.

at-ptr- >ran-name);
descriptornode-ptr->descriptor-type = 'B':

descriptornode-ptr- > first-value-node = NULL:
build- EQ-descrip(descriptornode-ptr.

at-ptr- >ran-length);
break:

case r : User wants to use this as a RANGE Attribute:
goodanswer = TRUE:
descriptornode-ptr = descriptor-node-alloc a:
descriptornode-ptr- >next-desc-node =

desc-head-ptr;
desc-head-ptr = descriptornode-ptr:
strcpy(descriptornode-ptr- > attr-n ame.

at-ptr- >ran-name):
descriptornode-ptr- >descriptor-type A

i
~94

I.5

descriptornode-ptr- -first-value-node = NULL.
build-RAN,-descrip(descriptornode-ptr.

aL-ptr- ,ran-length):
break:

default. User did not select a valid choice: *

4 printf(" nError - Invalid operation "'):
printf ("selected;\ 'n"):
printf("Please pick again\n");
break:

} SEnd Switch

End "While (goodanswer =FALSE)" ~

End "if (found == FALSE)"

at-ptr =at- ptr- >ran- next- attr:
End "while (at-ptr '=NULL)"

rel-ptr = rel-ptr->rn-next-rel:
End "while (rel-ptr != NULL)" i

N Now. we will traverse the Linked List of Descriptor Attributes and *

Values which was created, writing them to our Descriptor File:
descriptornode-ptr = desc-head-ptr:
while (descriptornode-ptr != NULL)

*if (descri ptornode- ptr > first- value- node !=NULL)

fprintfl f-ptr- >fi-fid. "%s %c ln". descriptornode-ptr- >attr-name,

descriptornode-ptr- >descriptor-type);
valuenode-ptr = descriptornode- ptr- >first-v al ue- node:
while (valuenode-ptr '=NULL)

fprintf(f-ptr->fi-fid,"%s %s\n". v aluenode-ptr- >value 1,
valuenode-ptr- >value2);

valuenode-ptr =v aluenode-ptr- >next-value- node:
I-End "while (valuenode-ptr != NULL)" *

) / End "if (descriptornode-ptr- >first-value- node !=NULL)
descriptornode-ptr = descriptornode- ptr- >next-desc- node:

)*End "while (descriptornode-ptr != NULL)"
fprintf(f-ptr->fi-fid, "S n"):

End "build-desc-fileo" routine

95

MULTI-BACKEND DATABASE SYSTEM INTERFACE(J) NAVAL
DPOSTGRADUATE SCHOOL MONTEREY CA S T HOISTE JUN 86

U CLA5flE
D P /G 92

Eh-hEE EE 5EEEl...

4..

1..6

05i, 11111
11112 A 6

!CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

build- EQ-descrip(descriptornode-ptr. atr-length)

struct descriptor-node *descriptornode-ptr: * ptr to a desc.node*
ilt attr-length; '* length of an attr*.

=This routine builds the EQUALITY Descriptor list for the current *

Field:

struct value-node *valuenode-ptr, /* Points to Value Node *

* value- node-alloc (; /* Allocates Value Nodes

int end-routine; /* Boolean flag
int index; /* Loop Index
ilt loop-count; /~Loop Index/
int val-count; , Loop Index
ilt str-len: ,/* Length of User Respon.*/
char *temp-value; /* Holds answer */

char *var-str-alloco, /* Allocates Sir. ~

/* Repetitively offer the user the opportunity to create EQUALITY de- ~
scriptors for the current Field, halting when the user enters an

'~empty carriage return (tt<CR>I1).

temp-value = var-str-alloc(attr-length + 1);
end-routine = FALSE.
while (end-routine == FALSE)

printf("' nEnter EQUALITY match value. or <CR> to exit:");
readstr(stdin. temp-value);
str-len = strlen(temp-value)
for (index = 0; temp-value iindex; ' index+--)

if (str-len != index

valuenode-ptr = value-node-alloc (attr-length);
v al uenode- ptr- >next-v alue- node = descriptornode- pt r- > first- valu e- node;
descriptornode-ptr- >first-value-node = valuenode-ptr;
strcpy(valuenode-ptr->valuel, "!11);

/* Convert first character in temp-value to upper case if necessary:
if (islower(temp-value i index 1))

temp-valuei index 1= toupper(temp-valuei index)

IConvert remaining chars in temp-value to lower case if necessary: *

for(loop-count = index - 1. loop-count <= str-len; loop-count±-)
if (isupper(temp-valueloop-countj))

temp-valuel loop-count = tolower(temp-valuet loop-countj)

/~Store temp-value into value2 from index to end of string.
val-count = 0;

for(loop-count = index: loop-count <=str-len: oop-count--)
valuenode-ptr- >value2.val-count -- = temp-value loop-count.

valuenode-ptr- >value2-val-count '\"0:
I} End "if (str-len !=index)" '

else
end-routine = TRUE;
!*./ End "while (end-routine ==FALSE)"

free(temp-value);
}, End "build-EQ-descrip(...)" routine ~

97

build-RAN-descrip(descriptornode-ptr. attr-length)

struct descriptor-node 2 descriptornode-ptr: '* ptr to a desc.node"
int attr-Iength; ,2length of an attr ~

*This routine builds the RANGE OF VALUEs Descriptor list for the *

/* current Field: *

struct value-node *valuenodeptr, /* Points to Value Node 2

value-node-alloco; / Allocates Value Nodes2

int end-routine; //* Boolean flag 2

int good-upper-yalue; 11* Boolean flag /

int index; 7*Loop Index *
int loop-count; /* Loop Index
int val-count; 7* Loop Index 2

mnt str-len; /2 Length of Input /

char *temp-value; /* Holds Answer 2

char 2 var-str-alloco; /1* Allocates String 2

/* Repetitively offer the user the opportunity to create RANGE OF VALUE *
/*Descriptors for the current Field. halting when the user enters ~
*an empty carriage return ("1<CR>")T2

temp-value = var-str-alloc(attr-length + 1);
end-routine = FALSE;
while (end-rouitine == FALSE)

printf("\nEnter Lower Bound. or <CR> to exit:");
readstr(stdin, temp-value);
str-len = strlen(temp-value)
for (index = 0; temp-valuei index! ='' index+-+)

if (str-len '=index

valuenode-ptr = value-node-alloco;
valuenode-ptr- >next-value-node = descriptornode-ptr-> first-value-node;
descriptornode-ptr- > first-v al ue- node = valuenode-ptr:

/* Convert first character in temp-value to upper case if necessary: ~
if (islower(tem p-value i index 1))

temp-valuei index 1 = toupper(temp-valuei index')

'~Convert remaining chars in temp-value to lower case if necessary:
for(loop-count = index + 1: loop-count <= str-len. loop-count--)

if (isupper(temp-vaiuelloop-countl))
ternp-valuelloop-counti = tolower(temp-valueiloop-count)

Stor tep-vlueinto vaulfrom index to end of string.

Val-count =0;

98

for(loop-count =index: loop-count <= sir-len: loop-count--)
valuenode-ptr- >value I val-count -- = temp-value!'loop-count

valuenode-ptr. >value 1 val-count

good-upper-value = FALSE:
while (goad-upper-value == FALSE)

I
printf("\nEnter Upper Bound:");
readstr(stdin, temp-value);
str-len = strlen(temp-value);
for (index =0; temp-valuelindexi ='' index++)

if (str-len !=index)

/ * Convert first character in temp-value to upper case if nec:
if (islower(temp-valuel index]))

temp-valueiindex', = toupper(temp-valuei index])

/* Convert remaining chars in temp-value to lower case if nee:
for(loop-count = index -, 1; loop-count <= str-len; loop-count++)

if (isupper(temp-valuelloop -countJ))
temp-valuetloop-counti = tolower(temp-valuelloop-count])

/* Store temp-value into valuel from index to end of string: /

val-count. = 0;
for(loop-count = index: loop-count <= str-len; loop-count+,~)

valuenode-ptr- >value2'val-count++ = temp-value~loop-counti;
valuenode-ptr- >value2fral-countI =\'

good-upper-value = TRUE;
) /* End "if (str-len '= index)" *

else
printf("\nYou must supply a non-blank Upper Bound.\n");
}/* End "while (good-upper-value == FALSE)" '

} /* End "if (str-len != index)" *

else
end-routine = TRUE;
} * End "while (end-routine == FALSE)" *

}/* End "build-RAN-descrip(...)" routine ~

APPENDLX E - THE HIERARCHICAL DESCRIPTOR FILE

#include <stdio.h>
#include <strings.h>
#include <ctype.h>
#include "licommdata.def"
#include "dli.ext"
#include "Iil.ext"

struct descriptor-node *desc-head-ptr; /* head-ptr to Descriptor node*,/

build-desc-fileO

{
/* This routine builds the Descriptor File to be used by the MBDS in the */
/* creation of Indexing Clusters: 8/

struct hie-dbid-node *db-ptr; /* ptr to root node in hier. */
struct hrec-node *hie-ptr; /* ptr to hierarchical node */
struct descriptor-node *descriptornode-ptr; /* ptr to Desriptor node */
struct value-node *valuenode-ptr; /* ptr to Value node
struct file-info *f-ptr; /* file pointer */

int num, /* user. query response
found, /* Boolean flag 8/

goodanswer, /* Boolean flag 8/

index; /* loop index */

/* Begin by setting the pointers to the dli-info data structure that is */
/* maintained for each user of the system: 8/

db-ptr = dli-info-ptr->di-curr-db.cdi-db.dn-hie;
f-ptr = &(dli-info-ptr->di-ddl-files->ddli-desc);

/* Next, copy the filename where the MBDS Descriptor File information */
/* will be stored. This filename is a Constant, and was obtained from 8/

/* licommdata.def: */

strcpy(f-ptr- >fi-fname. HDESCFname);

/* Now, open the Descriptor File to be created, in the Write mode: 8/

f-ptr->fi-fid = fopen(f-ptr->fi-fname, "w");

/* The next step is to traverse the Segments of the Hierarchical File. */
/* There are two reasons for doing so: First, to write the Segment Names 8/

/* to the Descriptor File as EQUALITY Descriptors; this is done automati- 8/

/* cally with any Hierarchical Database, forms a necessary part of the 8/

/* Descriptor File created from such a Database, and requires no User 8/

/* involvement. Second, it allows us to present the Segment names */
/* (without their respective Fields) to the User, as a memory jog: 8/

system("clear");

100

1 Q 1 1 1 1 1 111 I I I

fprintf(f-ptr- >fi-fid. "%s- n". db-ptr- >hdn-narne):

fprintf(f-ptr- >fi-fid. "FIL 'E B',n)
printf("-,nThe following are the Segments in the I)

printf("%/s". db-ptr- >hdn-namne);

printf(" Database: \n\,n"l);

/* Call a routine to traverse the Hierarchical Database. writing the seg-
/* ments to the File in the prescribed format, as well as printing them *

/* to the screen. A Linked List is also initialized here, to be used ~
,/ later to hold designated Descriptor Values:
hie-ptr = db-ptr->hdn-root-seg;
desc-head-ptr = NULL;
traverse-hierarchy(hie-ptr, f-ptr, FIRSTTIME);

/*Each Descriptor Block must be followed by the "C" sign:
fprintf(f-ptr- >fi-fid, "a0\n");

/'Now, inform the user of the procedure that must be followed to create
!~the Descriptor File: * I

printf("\n\nBeginning with the first Segment, we will present each");
printf("\nField of that Segment. You will be prompted as to whether"):
printf("l\nyou wish to include that Field as an Indexing Field,");
printf("\nand, if so. whether it is to be indexed based on strict");
printf("!\nEQUALITY. or based on a RANGE OF VALUES.");
printf("l\n\nStrike RETURN when ready to continue.");
dli-info-ptr->di-answer = get-ans(&num);

/* Re-set the Hierarchical Segment pointer to the Root Segment, then call
/ again our traversal routine -- this time, to query the User in devel- ~
/ oping the Descriptor Fields:1

hie-ptr = db-ptr->hdn-rooit-seg;
traverse-hierarchy (hie- ptr, f-ptr, RESTTIME);

'~Now, we will traverse the Linked List of Descriptor Fields and
/*Values which we've created, writing them to our Descriptor File: *

descriptornode-ptr = desc-head-ptr;
while (descriptornode-ptr != NULL)

f
if (descriptornode-ptr->first-value-node != NULL)

f
fprintf(f-ptr- > f-fid. "1%s %c\ 'n"l, descriptornode-ptr- >attr-name,

descriptornod e- ptr- > descriptor- type);
valuenode-ptr = descriptornode- ptr- > first- value- node;
while (valuenode-ptr!= NULL)

I
fprintf(f-ptr.>fi-fid, "%s %s\n", valuenode-ptr- >valuel.

valuenode-ptr- >value2);
valuenode-ptr = valuenode-ptr > next-value-node:
}/* End "while (valuenode-ptr != NULL)" ~

fprintf(f-ptr->fi-fid, "Q0\n"l);
} ,' End "if (descriptornode- ptr- >first-value- node != NULL)"

Lr..LQJ~LA~rALMMMA
P101

descriptornode-ptr = descriptornode- ptr- >next -desc- node:
I '* En 'd "while (descriptornode-ptr !=NULL)"

fprintf(f-ptr->fi-fid. "Sn"):
} ~End "build-desc- file()" routine

102

traverse- hierarchy (hie-ptr. f-ptr. traversal- numbher)

struct hrec-node *hje-ptr: I* ptr to hierarchical node
struct file-info *f-ptr: *file painter
int traversal-number; ,/* control information

'~This routine performs a pre-order recursive traversal of an Hierarchi-
,'* cal data structure: *

if (traversal-number == FIRSTTIME)
print-segment-info(hie-ptr, f-ptr);

else
query-segment- info (hie- ptr);,

if (hie-ptr->hn-first-child != NULL)
traverse- hierarchy (h ie- ptr- > hn-first-c hild, f-ptr, traversal- number);

if (hie-ptr-> hn-next-sib != NULL)
traverse- hierarc hy (h ie- ptr- > hn- next-sib, f-ptr, traversal-n u mber);

}, End "traverse-hierarchy(...) routine *

103

-I

print-segrnent-info(hie-ptr. f-ptr)

struct hrec-node *hje-ptr; ' ptr to hierarchica&] node
struct file-info *f-ptr; file pointer

int str-len, /* length of current string ~
index; /* loop index

!This routine writes Segment Names as EQUALITY Descriptors to the
*Descriptor File, while concurrently printing the names to the screen. *
*Only the first character of the Segment Name should be in upper case; *

alother characters in the name must be lower case: *

fprintf(f-ptr->fi-fid. "1! "1),

fprintf(f-ptr- >fi-fid, "1%c". hie-ptr-> hn-narnelOj);
str-Ien =strlen (hie- ptr- > hn- name);
for (index = 1: index < str-len; index-)

if (isupper(hie-ptr-> hn-name; index]))
fprintf(f-ptr-> fi-fid. "%C", tolower(hie-ptr- > hn- name;index))

else
fprintf(f-ptr->fi-fid. "%c". hie-ptr- > hn-namel index]):

fprintf(f-ptr->fi-fid, "v\n19);
priatf("\n fl t%stt, hie-ptr- >hn-name);

} ~End "prin t-segment- info(...)" routine *

104

query-segment-info(hie-ptr)

struct hrec-node *hie-ptr: ptr to hierarchical node

{
This routine presents each Field of the current Segment to the *

User, determining whether it is to be installed as a Descriptor At- */
/* tribute -- and. if so. whether it is to be an EQUALITY or RANGE OF */

'; VALUES Descriptor:

struct hattr-node *field-ptr; /* ptr to Field node */
struct value-node *valuenode-ptr /* ptr to Value Node
struct descriptor-node *descriptornode-ptr, /* ptr to Descriptor List */

descriptor-node-alloc); / Allocates Nodes *

int found. /" Boolean flag *
num, 7 user query response * /

goodanswer: /* Boolean flag /

* Begin by setting the Field pointer to the first Field of the
current Segment, then -- while there are more Fields to process --

/* display the current Segment and Field:

field-ptr = hie-ptr->hn-first-attr;
while (field-ptr != NULL){

system ("clear");
printf("Segment name: %s\n". hie-ptr->hn-name);
printf("Field name: %s\n",field-ptr->han-name);

Now, traverse the Field linked list that is being created, to */

/ see if the current Field has already been established as a De-
/ scriptor Field. If so, offer the User the opportunity to add */

1* additional EQUALITY or RANGE OF VALUE values: otherwise, offer the */
//* User the opportunity to establish this as a Descriptor Field: */

descriptornode-ptr = desc-head-ptr;
found = FALSE;
while ((descriptornode-ptr != NULL) && (found == FALSE))

{
if (strcmp(field-ptr->han-name, descriptornode-ptr->attr-name) == 0)

{

/* The Field HAS already been chosen as a Descriptor. Allow *
/* the User the option of adding additional Descriptor values, *,

/* after listing those already entered:

printf("\nThis Field has been chosen as an Indexing Field.\n");
printf("The following are the values "):

printf("that have been specified: \n,, n");
found = TRUE;
valuenode-ptr = descriptornode-ptr- > first-value-node;
while (valuenode-ptr != NULL)

{

105

if (descriptornode-ptr-'descriptor-type == 'A')
printf(" t lcs 'cs, n". valuenode-ptr->valuel.

valuenode-ptr- >value2):
else

printf("\t 7s n". valuenode-ptr- >value2):
valuenode-ptr = valuenode-ptr- > next-value-node:
)'* End "while (valuenode-ptr NULL)" *

printf("\nDo you wish to add more
if (descriptornode-ptr->descriptor-type == 'A')

printf("RANGE"):
else

printf("EQUALITY");
printf(" values? (y or n)\n"):
dli-info-ptr->di-answer = get-ans(&num);
if ((dli-info-ptr-> di-answer == 'y') I

(dli-info-ptr->di-answer = 'Y,}

The User DOES wish to add more Descriptors to the
currently existing list:

if (descriptornode-ptr- >descriptor-type == A')
build-R AN-descrip(descriptornode-ptr. field-ptr- > han-length):

else
build-EQ-descrip(descriptornode-ptr, field-ptr- > han-length);

End "if ((dli-info-ptr->di-answer == Iy')
(dli-info-ptr->di-answer == 'Y'))" *

} End "if (strcmp(...) == 0)" *
descriptornode-ptr = descriptornode-ptr- > next-desc-node:
} /* End "while ((descriptornode-ptr != NULL) && (found...)" *

if (found == FALSE)

1* The Field has NOT previously been chosen as a Descriptor.
Allow the User the option of making this a Descriptor Field.

with appropriate Descriptor Values:

printf("\nDo you wish to install this Field as an
printf("Indexing Field?\n\n"):
"rintf("\t(n) - no: continue with next Field/Segment\n");

printf("\t(e) - yes: establish this as an EQUALITY Indexing Field'\n"):
printf("\t(r) - yes; establish tuis an a RANGE Indexing Fieldn");

goodanswer = FALSE:
while (goodanswer == FALSE)

dli-info-ptr->di-answer = get-ans(&num);

switch(dli-info-ptr- >di-answer)

case 'n': /* User does NOT want to use this as an Indexing

106

Field:
goodanswer =TRUE:
break:

case 'e: User wants to use this an an EQUALITY Indexing
=Field:

goodanswer = TRUE;
descriptornode-ptr = descriptor- node- alloc (
descriptornode-ptr- > next -desc-node = desc- head-ptr:
desc-head-ptr = descriptornode-ptr:
strcpy (descriptornode-ptr- > attr- name,

field- ptr- > han- name):
descriptornode-ptr- >descriptor-type = B':
descriptornode- ptr- >first-v alue- node =NULL;

build- EQ-descrip (descriptornode- ptr.
field-ptr- >han-length):

* break:

case Yr: '~User wants to use this as a RANGE Indexing
*Field:

goodanswer = TRUE:
descriptornode-ptr = descriptor- node- allocO
descriptornode-ptr- >next-desc-node = desc-head- ptr:
desc-head-ptr = desciiptornode-ptr;
strc py (descriptornode-ptr- >'attr-name,

field- ptr- > han-name):
descriptornode-ptr- >descriptor-type W A:
descriptornade-ptr- >first-vai ue-n ode =NULL;

build-RAN-descrip(descriptornode-ptr.
'C.' .field-ptr->han-length);

break;

default: .1* User did not select a valid choice:
printf(" nError - Invalid Operation Selected;,,nr");
printf("Please pick again'n)
break;

'~End Switch ~
SEnd "while (goodanswer = FALSE)"

End "if (found =FALSE)"
field-ptr = field-ptr- >han-next-attr:

" End "while (field-ptr != NULL)"
End "query-segment-info(...)" routine ~

107

V ~'~

build- EQ-descrip(descriptornode-ptr. attr-length)

struct descriptor-node 'descriptornode-ptr: 1* ptr to a desc.node*
int attr-length; length of an attr

This routine builds the EQUALITY Descriptor list for the current
Field:

struct value-node *valuenode-ptr, /* Points to Value Node *

value-node..alloc); / Allocates Value Nodes *

int end-routine; /* Boolean flag
int index; - /* Loop Index
int loop-count; /* Loop Index

mnt val-count: /* Loop Index
int str-len; /* Length of input
char *temp-value. Holds answer
char var-str-alloco; ,!* Allocates Str. /

/Repetitively offer the user the opportunity to create EQUALITY de- *

scriptors for the current Field, halting when the user enters an
'~empty carriage return ("'<CR>"').

temp-value = var-str-alloc(attr-length + 1);

end-routine = FALSE;
while (end-routine == FALSE)

printf("\nEnter EQUALITY match value. or <CR> to exit:");
readstr(stdin, temp-value);
str-len = strlen(temp-value)
for (index =0; temp-valueiindexi ='' index± +)

if (str-len !=index

valuenode-ptr = value-node-alloc (attr-length);
v aluenode- ptr- > next- valu e- node = descriptornode- ptr- > first-v alue- node;
d escri ptornode- ptr- > first- value- node = valuenode-ptr:
strcpy (v aluenode-ptr- >valuel1, 11111);

,* Convert first character in temp-value to upper case if necessary:
if (islower(temp-valueiindex]))

temp-valueiindexi = toupper(ternp-valuel index!)

'~Convert remaining chars in temp-value to lower case if necessary: ~
for(loop-count = index -1- 1; loop-count <= str-len; loop-count---+-)

if (isupper(temp-valuel Ioop-count}))
temp-valuci loop-countj' = tolower(temp-valuel loop-counti

, Store temp-value into value2 from index to end of string.
val-count =0;

108

for(loop-count = index: loop-count <= scr-len: loop-count--)
valuenode-ptr- >value2 val-count-- , = temp-valueiloop-count.:

valuenode-ptr- >value2'val-count' "0.:
} End "ijf Istr-len != index)"t

else
end-routine = TRUE:
} ** End "while (end-routine == FALSE)"*/

free(tempo-value),
}, End "build-EQ-descrip(...) routine

109

build- RAN-descrip (descriptornode-ptr. attr-lengt h) '

struct descriptor-node *descriptornode-ptr: 'ptr to a desc.node*
int attr-length: '~length of an attr ,

This routine builds the RANGE OF VALUEs Descriptor list for the
current Field:

struct value-node *valuenode-ptr, /*Points to Value Node /
value-node-alloco; / Allocates Value Nodes *

mnt end-routine; /* Boolean flag
int good-upper-yalue; /* Boolean flag
int index; /* Loop Index
int loop-count; /* Loop Index
int val-count; /~Loop Index 5

int str-len; / Length of Input ~
char * temp-value; '~Holds Answer 5

char 5var-str-alloco: I* Allocates String

* Repetitively offer the user the OPPOML-lity to create RANGE OF VALUE *
*Descriptors for the current Field. halting when the user enters

* an empty carriage return ("1<CR>"1). 5

temp-value = var-str-alloc(attr-length -t- 1):

end-routine = FALSE;
while (end-routine == FALSE)

f
printf("\nEnter Lower Bound, or <CR> to exit:");
readstr(stdin, temp-value);
str-len = strlen(temp-value)
for (index = 0; temp-value index~ '; index++)

if (str-len !=index

valuenode-ptr = value- node-alloc;
valuenode-ptr- >next-value-node = descriptornode- ptr- > first-value- node;

descriptorn ode- ptr- > first-v alue- node = valuenode-ptr:

/* Convert first character in temp-value to upper case if necessary:*/
if (islower(temp-valuei index]))

temp-value index toupper(temp-valuejindex!)

/* C6nvert remaining chars in temp-value to lower case if necessary:
for(loop-count = index ~- 1; loop-count <= str-len; loop-count---)

if (isupper(temp-valueiloop-countj))
temp-valuelloop-counti = tolower(temnp-valuelloop-count])

/* Store temp-value into valuel from index to end of string:
val-count =0;

110

for(loop-count = index: loop-count <c = str-len: loop-count --
valuenode-ptr- >valuel val-count -- = Lemp-value& loop-count

v aluenode- ptr- >value I val-count, = W

good-upper-value = FALSE:
while (good-upper-value == FALSE)

{
printf("\ nEnter Upper Bound:"):
readstr(stdin, temp-value);
str-len = strlen(temp-value):
for (index 0; temp-valuejindex.' = 'index+--)

if (str-len !=index)

Convert first character in temp-value to upper case if nec:
if (islower(temp-valuei index1))-

temp-valuejindexj; = toupper(temp-valueiindexj)

/* Convert remaining chars in temp-value to lower case if nec:
for(loop-count = index + 1. loop-count <= str-len. loop-count-+)

if (isupper(temp-valueiboop-countj))
temp-valuei loop-count) = tolower(temp-value) loop-counti

/* Store temp-value into valuel from index to end of string:
val-count = 0;

for(loop-count = index: loop-count <= str-len: loop-count++i)
valuenode-ptr- >sralue2 [val-count±+1 temp-valuelloop-count,;;

valuenode-ptr- >value21val-countI =\O

good-upper-value = TRUE;
I /* End "if (str-len I!= index)" ,

else
printf("'\nYou must supply a non-blank Upper Bound.\n");
}/* End "while (good-upper-value == FALSE)" *

} /* End "if (str-len != index)" 5

else
end-routine = TRUE;
}/* End "while (end-routine == FALSE)" 1
} ~End "build-RAN-descrip(...) routine ,

APPENDIX F - THE NETWORK DESCRIPTOR FILE

#include <stdio.h>
#include <strings.h>
#include <ctype.h>
#include "licommdata.def"
#include "dml.ext"
#include "lil.ext"

struct descriptor-node *desc-head-ptr; /* ptr to Descriptor head node

build-desc-file()

{
/* This routine builds the Descriptor File to be used by the MBDS in the /
/* creation of Indexing Clusters:

struct net-dbid-node *db-ptr; /* database pointer */

struct nrec-node *net-ptr; /* ptr to Network Node
struct descriptor-node *descriptornode-ptr; /* ptr to descriptor node /
struct value-node *valuenode-ptr; /* pointer to Value Node */
struct file-info *f-ptr; /* file pointer
int num, /* User query response */

found, /* Boolean flag
goodanswer, /* Boolean flag
index; /* loop index /

/ Begin by setting the pointers to the dml-info data structure that is *
/* maintained for each user of the system:
db-ptr = dml-info-ptr->dmi-curr-db.cdi-db.dn-net;
f-ptr = &(dml-info-ptr->dmi-ddl-files->ddli-desc);

/* Next, copy the filename where the MBDS Descriptor File information
/. will be stored. This filename is a Constant, and was obtained from
/* licommdata.def:
strcpy(f-ptr->fi-fname, NDESCFname);

/* Now, open the Descriptor File to be created, for Write access *

f-ptr->fi-fid = fopen(f-ptr->fi-fname, "w");

/* The next step is to traverse the Records of the Network File. There
are two reasons for doing so: First, to write the Record Names to the */

/ Descriptor File as EQUALITY Descriptors; this is done automatically */
/* with any Network Database, forms a necessary part of the Descriptor * /
/ File created from such a Database, and requires no User involvement. *
1' Second, it allows us to present the Record names (without their re-
/* spective Attributes) to the User, as a memory jog:
system ("clear");

112

fprintf(f-ptr- >f-fid. "/os n". db-ptr- >ndn-namne);
fprintf(f-ptr->fi-fid. "FILE B n"):
printf("\nThe following are the Records in the")
printf("%s". db-ptr->~ndn-nacme);
printf(" Database:\ n,,n"):

*'Call a routine to traverse the Network Database. writing the Record '

/*names to the File in the prescribed format, as well as printing them ,

/' to the screen. A Linked List is also initialized here, to be used /
/* later to hold d-signated Descriptor Values:
net-ptr = db-ptr->ndn-first-rec;
desc-head-ptr = NULL;
traverse-network (net-ptr, f-ptr, FIRSTTIME);

/* Each Descriptor Block must be followed by the "O" sign: '
fprintf(f-ptr->fi-fid. "O0\n");

I' Now, inform the user of the procedure that must be followed to create *
/* the Descriptor File:
printf("\n \nBeginning with the first Record, we will present each");
printf("\nAttribute of that Record. You will be prompted as to whether");
printf("\nyou wish to include that Attribute as an. Indexing Attribute,");
printf("\nand, if so. whether it is to be indexed based on strict");
printf("1\ nEQUALITY. or based on a RANGE OF VALUES.");
printf("\n\nStrike RETURN when ready to continue.");
dml-info-ptr->dmi-answer = get-ano(&num);

/* Re-set the Network Record pointer to the First Record, then call again'

/*our traversal routine - this time, to query the User in developing ,

./* the Descriptor Attributes:
net-ptr = db-ptr->ndn-first-rec;
traverse-network(net-ptr, f-ptr, RESTTIM(E);

/* Now, we will traverse the Linked List of Descriptor Attributes and
/* Values which we've created, writing them to our Descriptor File:
descriptornode-ptr = desc-head-ptr;
while (descriptornode-ptr != NULL)

if (descriptornode-ptr->first-value-node != NULL)

fprintf(f-ptr- >fi-fid, "%s %c\n", descriptornode-ptr- >attr-name,
descriptornode- ptr- > descriptor- type);

valuenode-ptr = descriptornode-ptr->first-value-node;
while (valuenode-ptr != NULL)

fprintf(f-ptr- >fi-fid, "1%9 %s\n", valuenode-ptr- > valuel1,
valuenode-ptr. >value2);

valuenode-ptr = valuenode-ptr->next-value-node;
) /* End "while (valuenode-ptr != NULL)" ,

fprintf(f-ptr->fi-fid. "O0\n");
}/* End "if (descriptornode-ptr- >first-value- node != NULL)" '

113

descriptornode-ptr = descriptor 'node-pi r- -next -desc- node:
} End "while (descriptornode-ptr '=NULL)"

fprintf(f-ptr- >fi-fid. tt$ n"):
} End "build-desc-fileo" routine~

114

traverse-network (net -ptr. f-ptr. traversal-n umber)

struct nrec-node *net-ptr: ptr to Network Node
struct file-info *f-ptr: =File Pointer
int traversal-number; /Scontrol information

'~This routine traverses a Network data structure: ,

struct, nattr-node *at-ptr; /* ptr to Attribute Node

while (net-ptr!= NULL)
f
if (traversal-number == FIRSTTIME)

print-record-info(net-ptr, f-ptr):
else

at-ptr = net-ptr->nrn-first-attr;
query-record-info(at-ptr, net-ptr);

net-ptr = net-ptr->nrn-next-rec:
} ,' End "while (net-ptr != NULL)" *

} End "traverse-network(...) routine ~

L15

print -record- info (net-ptr. f-ptr)

struct nrec-node *net-ptr; *ptr to Network Node *

struct file-info *f-ptr. 1 File Pointer*

int str-Ien. /* length of current string *

index; / * loop index

, This routine writes Record names as EQUALITY Descriptors to the *
,'* Descriptor File. while concurrently printing the names to the screen:

fprintf(f-ptr.>fi-fid. "! it):
fprintf(f-ptr- >fi-fid. 11%c". net-ptr-> nrn-name[Oj);
str-len = strlen(net-ptr- >nrn-name),
for (index = 1; index < str-len; index++)

if (isupper~net-ptr- > rn-namel index]))
fprintf(f-ptr- >fi-fid, "1%c", tolower(net-ptr- >nrn-namej index]));

else
fprintf(f-ptr. >fi-fid. "%c", net-ptr > nrn-name[indexj);

fprintf(f-ptr.>fi-fid, "1\n");
printf("\n\t%s"., net-ptr- >nrn-name);,

}/* End "print-record-info(...)" routine ~

116

q uery-record- info (at -ptr. net-ptr)

struct nattr-node *at-ptr; =ptr to attribute node

struct. nrec-node *net-ptr; ptr to record node

,*This routine performs a pre-order traversal of the Network Attribute
'~data structure:

get-record- info (at- ptr, net-ptr);

if (at-ptr->nan-child != NULL)
query-record-info(at-ptr- >nan-child. net-ptr);

if (at-ptr.>na~n-next-attr !=NULL)
query-record- info (at -ptr- > nan- next- attr, net-ptr);
}'End "query-record-info(...) routine *

117

11 JR)I

get-record-info(at-ptr. net-ptr)

struct nattr-node 5at-ptr: * ptr to attribute node
struct nrec-node 5 net-ptr: , ptr to record node *

I
This routine presents each Attribute of the current Record to the
User. determining whether it is to be installed as a Descriptor At- /

/* tribute -- and, if so. whether it is to be an EQUALITY or RANGE OF *

/* VALUES Descriptor: *

struct value-node *valuenode-ptr; / ptr to Value Node
struct descriptor-node *descriptornode-ptr, /* ptr to Descriptor List

descriptor-node-alloco; / Allocates Nodes *'

int found, /* Boolean flag /

num, /* user query response *1

goodanswer; /* Boolean flag

/* Begin by printing the current Record and Attribute Names on the

/* screen: */
system ("clear");
printf("Record name: %s\n", net-ptr->nrn-name);
printf("Attribute name: %s\n",at-ptr->nan-name);

/* Now. traverse the Attribute linked list that is being created, to *,
* see if the current Attribute has already been established as a De- *'
* scriptor Attribute. If so. offer the User the opportunity to add */

/* additional EQUALITY or RANGE OF VALUE values; otherwise, offer the *

/ * User the opportunity to establish this as a Descriptor Attribute: *

descriptornode-ptr = desc-head-ptr
found = FALSE;
while ((descriptornode-ptr != NULL) && (found == FALSE))

{
if (strcmp(at-ptr->nan-name, descriptornode-ptr->attr-name) == 0)

I

/* The Attribute HAS already been chosen as a Descriptor. Allow *,I

/* the User the option of adding additional Descriptor values, */
/* after listing those already entered: */

printf("\nThis Attribute has been chosen as an Indexing Attribute.\n");
printf("The following are the values that have been specified: \n\n");
found = TRUE;
valuenode-ptr = descriptornode-ptr->first-value-node;
while (valuenode-ptr != NULL)

if (descriptornode-ptr- >descriptor-type == 'A')

printf("ts s\ n". valuenode-ptr- >valuel,
valuenode-ptr- >value2);

else
printf("\ t%s\ n", vauenode-ptr- >value2);

118

valuenode-ptr =valuenode-ptr- >next-value-node:
} End "while (valuenode-ptr !=NULL)"

printf("11 nDo you wish to add more 1)
if (descriptornode- ptr- >descriptor- type = A')

printf(" RANGE");
else

printf("EQUALITY");
printf("1 values? (y or)n;
dmi-info-ptr->dmi-answer = get-ans(&num);
if ((dml-info-ptr->dmi-answer =='y') 11

(dml-info-ptr->dmi-answer =='Y'))

/* The User DOES wish to add more Descriptors to the I

/currently existing list:/

if (descriptornode- ptr- > descriptor- type == 'A)
build-RAN-descrip(descriptornode-ptr, at-ptr- >nan-length 1);

else
build-EQ-descrip(descriptornode-ptr. at-ptr- >nan-length 1);
}/* End "if ((dml-info-ptr->dmi-answer == '' :

(dml-info-ptr- >dmi- answer == 'Y'))" *

}/* End "if (strcmp(...)= 0)" *
descriptornode-ptr = descriptornode-ptr. > next-desc- node;
) /* End "while ((descriptornode-ptr != NULL) && (found...)"*

if (found == FALSE)

'The Attribute has NOT previously been chosen as a Descriptor. *

'~Allow the User the option of making this a Descriptor Attribute, *

,*with appropriate Descriptor Values:

printf("\nDo you wish to install this Attribute as an 1)
printf("Indexinr Attribute?'\n \n ");
printf("\,t(n) - no: continue with next Attribute'/Record'\n");
printf("\t(e) -yes: establish this as an EQUALITY Indexing Attribute\n");
printf("\t(r) - yes' establish this as a RANGE Indexing Attribute\n");

goodanswer = FALSE:
while (goodanswer == FALSE)

f
dml-info- ptr- > dmi- answer = get-ans(&num);

switch (dml-info-ptr- > dm i- answer)

case 'n : User does NOT want to use this as an Indexing
''Attribute:

goodanswer = TRUE;
break;

case 'e': /* User wants to use this an an EQUALITY Indexing

Attribute:
goodanswer =TRUE:

descriptornode-ptr = descri ptor- node- alloc ~
descriptornode- ptr- >next-desc- node = desc-head-ptr:
desc-head-ptr = descriptornode-ptr;
strc py (descriptornode- ptr- > attr- name,

at- ptr- >nan-name):
descriptornode- ptr- > descriptor- type ='B';

descriptornode-ptr- >first-value-node =NULL;

build-EQ-descrip(descriptornode-ptr..

at-ptr->nan-length 1):
break;

case Yr: User wants to use this as a RANGE Indexing
Attribute:

goodanswer = TRUE;
descriptornode-ptr = descriptor- node- alloc;
descriptornode- ptr- >next-desc- node = desc-head-ptr:
desc-head-ptr = descriptornode-ptr;
strcpy (descriptornode-ptr- >attr-name,

at-ptr->nan-name);
descriptornode-ptr- >descriptor-type W A:
descriptornode-ptr- >first-value-node =NULL;

build- RAN-descrip (descriptornode-ptr,
at- ptr- >nan-Ilength 1);

break:

default: "User did not select a valid choice: /
printf("\ nError - Invalid Operation Selectd; n")
printf("Please pick again\n");,
break:

} * End Switch
} End "while (goodanswer = FALSE)" ~

} ~End "if (found = FALSE)" *

}'End "get-record-info(...) routine *

120

build-EQ-descripldescriptornode-ptr. attr-length)

struct descriptor-node *descriptornode-ptr: ptr to a desc.node*
int attr-length: length of an attr

This routine builds the EQUALITY Descriptor list for the current *

* Field:

struct value-node *valuenode-ptr. 7*Points to Value Node s

value-node-alloco; ' Allocates Value Nodes

int end-routine: /*Boolean flag
int index: - Loop Index
int loop-count: /* Loop Index
mnt val-count; Loop Index*
int str-len: Length of input
char = temp-value: .~Holds answer
char 'var-str-alloco: Allocates Str.

,* Repetitively offer the user the opportunity to create EQUALITY de-
/* scriptors for the current Field. halting when the user enters an

:empty carriage return ("<CR>").

temp-value = var-str-alloc(attr-length + 1);
end-routine = FALSE:
while (end-routine == FALSE)

f
printf("\nEnter EQUALITY match value, or <CR> to exit:");
readstr(stdin. temp-value);
str-len = strlen(temp-value)
for (index =0: temp-valuel index j ='':index--)

if (str-len index

valuenode-ptr = value-node-alloc(attr-iength);
valuenode- ptr- > next-v alue- node = descriptornode- ptr- > first -value- node;
descriptornode-ptr- > first-value- node = valuenode-ptr:
strcpy(valuenode-ptr- >valuel. "!"):

Convert first character in temp -value to upper case if necessary:
if (islower(temp-value; index!))

temp-value. index = toupper(temp-value; index,)

Convert remaining chars in temp-value to lower case if necessary:
for(loop-count = index - 1: loop-count <c= str-len; loop-count-i---)

if (isupper(temp-valuelloop-counti))
temp-value: loop-count, = tolower(temp-value) loop-count.)

/Store temp-value into value2 from index to end of string. *

val-count = 0:

121

for(loop-count = index: loop-count <= str-len: loop-count--
V&luenode-ptr->value2 val-count--= Lerp-value loop-count

valuenode-ptr- value2 val-count =0':

)} End "if (str-len != index)"
else

end-routine = TRUE:
,'* End "while (end-routine == FALSE)"I

free (temp-value):
} ~End "build-EQ-descrip(...)"I routine*

122

build- R AN-descrip(descriptornode-ptr. attr-lengt h)

struct descriptor-node *descriptornode-ptr: *ptr to a desc.node*
int attr-length: length of an attr

This routine builds the RANGE OF VALUEs Descriptor list for the *

current Field: S

struct value-node *valuenode-ptr, /* Points to Value Node
value-node-alloco; / Allocates Value Nodes /

int end-routine; /* Boolean flag
int good-upper-value; '* Boolean flag
int index; /5Loop Index
int loop-count; '~Loop Index
int val-count: 'Loop Index*
int str-len; ' Length of Input
char S temp-value: /5Holds Answer
char 5 var-str-alloco: ' Allocates String ,

/* Repetitively offer the user the opportunity to create RANGE OF VALUE
/* Descriptors for the current Field. halting when the user enters

/an empty carriage return ("1<CR>"1).*/

temp-value =var-str-alloc(attr-length-.1)
end-routine = FALSE:
while (end-routine == FALSE)

printf("1\nEnter Lower Bound. or <CR> to exit:");
readstr(stdin. temp-value);
str-len = strlen(temp-value)
for (index =0: temp-valuelindex == index+-4-)

if (str-len !=index

valuenode-ptr = value- node-alloc:
valuenode-ptr- > next-value- node = descriptornode-ptr- > first-v alue- node;
descriptornode-ptr->first-value-node = valuenode-ptr:

,/* Convert first character in temp-value to upper case if necessary:
if (islower(temp-valuelindexj))

temp-valuel indexi = toupper(temp-valuer indexj)

'Convert remaining chars in temp-value to lower case if necessary: ~
for(loop-count = index - - 1: loop-count <= str-len; loop-count+-+)U

if (i3Upper(temp-valuelloop-countj))

Lemp-valuef loop-count = tolower(temp-valuelloop-count,)

/Store temp-value into valuel from index to end of Atring: 5

123

for(loop-count = index: loop-count =str-len: loop-count---)
v aluenode-ptr- > value I val-count - - (em p-value loop-count.,:

valuenode-ptr- >valuel val-count = 0

good- upper-value = FALSE;
while (good- upper-value ==FALSE)

f
printf("\ 'nEnter Upper Bound:"):
readstr(stdin, temp-value):
str-len = strlen(temp-value):
for (index =0: ternp-valuei index.= index--)

if (str-len index)

Convert first character in temp-value to upper case if nec: ~
if (islower(temp-valuet index))

temp-valuei index = oupper(temp-valuciindex)

Convert remaining chars in temp-value to lower case if nec:
for(loop-count = index - 1: loop-count <= str-len; loop-count---)

if (isupperltemp-value~loop-count;))
temp- value, loop-count = tolower(temp-valuelloop-count)

Store temp-value into valuel from index to end of string:
val-count = 0:
for(loop-count = index: loop-count <= str-len: loop-count--)

valuenode- ptr- -- value2 val-count-+ -- = temp-valuel loop-count:
valuenode-ptr->value2ival-counti = \'

good- upper-value = TRUF
)*End "if (str-len != int

else
printf(' n You must supply a non-blank Upper Bound.,a)

*End "while (good- upper-v alue ==FALSE)" '

End "if (str-len '= index)"
else

end-routine = TRUE;
End "while (end-routine == FALSE)"*

End "build-RAIX-descrip(...)" routine

124

LIST OF REFERENCES

1. Hsiao, D. K.. arid Harary. F., "A Formal System for Information Retrieval
from Files." Communications of the A CM. Vol. 13. No. 2. February 1970.
also in Corrigenda, Vol. 13, No. 3. March 1970.

2. Wong, E.. and Chiang, T. C., "Canonical Structure in Attribute Based File
Organization," Communications of the ACM, Vol. 14, No. 9, September
1971.

3. Naval Postgraduate School, Monterey. California. Technical Report.
NPS52-86-011. The Multi-Lingual Database System, by S. A. Demurjian and
D. K. Hsiao. February 1986.

4. Naval Postgraduate School. Monterey, California. Technical Report.
NPS52-85-009. Design. Analysis and Performance Evaluation Methodologies
for Database Computers. by S. A. Demurjian. D. K. Hsiao and P. R.
Strawser, June 1985.

5. The Ohio State University, Columbus. Ohio, Technical Report, OSU-
CISRC-TR-81-7. Design and Analysis of a Midti-Backend Database System
for Performance Improvement, Functionality Expansion and Capacity
Growth (Part 1), by D. K. Hsiao and M. J. Menon, July 1981.

6. The Ohio State University, Columbus, Ohio, Technical Report, OSU-
CISRC-TR-81-8, Design and Analysis of a Multi-Backend Database System
for Performance Improvement, Functionality Expansion and Capacity
Growth (Part II), by D. K. Hsiao and M. J. Menon. July 1981.

7. Naval Postgraduate School, Monterey. California. Technical Report,
NPS52-85-002, A Multi-Backend Database System for Performance Gains,
Capacity Growth and Hardware Gains, by S. A. Demurjian, D. K. Hsiao and
M. J. Menon, February 1985.

8. Wortherly. C. R., The Design and Analysis of a Network Interface for the
Multi-Lingual Database System, M. S. Thesis, Naval Postgraduate School,
Monterey. California, December 1985.

9. Kloepping, G. R. and Mack, J. F.. The Design and Implementation of a
Relational Interface for the Multi-Lingual Database System, M. S. Thesis.
Naval Postgraduate School, Monterey. California. June 1985.

10. Benson, T. P. and Wentz, G. L.. The Design and Implementation of a
Hierarchical Interface for the Multi-Lingual Database System, M. S. Thesis.
Naval Postgraduate School, Monterey, California. June 1985.

125

11. Brooks. Jr.. Frederick P.. the mythical man-month. p. 16. Addison-WesleN
Publishing Company. 1975.

12. Banerjee. J.. Baum. R. L.. and Hsiao. D. K.. "Concepts and capabilities of a
database computer." ACM Transactions on Database Systems. Vol. 3. No.
4. December 1978.

126

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria. Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5000

3. Department Chairman. Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Curricular Officer, Code 37
Computer Technology
Naval Postgraduate School
Monterey. California 93943-5000

5. Professor David K. Hsiao. Code 52Hq 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. Mr. Steven A. Demurjian, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

7. Captain Steven T. Holste 3
4160 - 128th Ave. S.E. #A-110
Bellevue, Washington 98006

127

MPM-

E

